Obtenez des conseils d'experts et des connaissances communautaires sur Zoofast.fr. Posez n'importe quelle question et recevez des réponses rapides et bien informées de notre réseau de professionnels expérimentés.

Bonjour,est ce que vous pourriez m’expliquer comment faire avec le discriminant svp

Bonjourest Ce Que Vous Pourriez Mexpliquer Comment Faire Avec Le Discriminant Svp class=

Sagot :

OzYta

Bonsoir,

Je te refais des rappels de cours :

Soit f une fonction du second degré définie par f(x) = ax² + bx + c.

Le discriminant de cette fonction est défini par Δ = b² - 4ac.

  • Si Δ < 0, l'équation f(x) = 0 n'admet pas de solution.
  • Si Δ = 0, l'équation f(x) = 0 admet une solution : [tex]x_{0}[/tex] = -b / 2a
  • Si Δ > 0, l'équation f(x) = 0 admet deux solutions distinctes :

[tex]x_{1}[/tex] = (-b - [tex]\sqrt{delta}[/tex] ) / 2a

[tex]x_{2}[/tex] = (-b + [tex]\sqrt{delta}[/tex] ) / 2a

2x² + 3x - 4 = 0

Or, Δ = 3² - 4 * 2 * (-4)

= 9 + 32

= 41

Comme Δ > 0, l'équation f(x) = 0 admet deux solutions distinctes :

[tex]x_{1}[/tex] = (-3 - [tex]\sqrt{41}[/tex] ) / 4

[tex]x_{2}[/tex] = (-3 + [tex]\sqrt{41}[/tex] ) / 4

D'où S = { [tex]\frac{-3-\sqrt{41} }{4};\frac{-3+\sqrt{41} }{4}[/tex] }

x² - [tex]\sqrt{2}[/tex] x + [tex]\frac{1}{2}[/tex] = 0

Or, Δ = (-[tex]\sqrt{2}[/tex])² - 4 * 1 * [tex]\frac{1}{2}[/tex]

= 2 - 2

= 0

Comme Δ = 0, l'équation admet une solution :

[tex]x_{0}[/tex] [tex]=-\frac{-\sqrt{2} }{2}[/tex] [tex]=\frac{\sqrt{2} }{2}[/tex]

D'où S = { [tex]\frac{\sqrt{2} }{2}[/tex] }

On passe à la troisième.

-x² + x + 1 = 3x - 7

⇔ -x² + 4x + 8 = 0  

(on met tout dans le même membre pour avoir 0 dans l'un des membres)

Je te laisse essayer de résoudre. Si tu n'y arrives pas, reviens vers moi.

(x - 2)(-3x² + 19x - 6) = 0

Un produit de deux facteurs est nul si et seulement si l'un des facteurs est nul.

SSI   x - 2 = 0   ou   -3x² + 19x - 6 = 0

SSI   x = 2   ou   -3x² + 19x - 6 = 0

Il faut donc résoudre l'équation -3x² + 19x - 6 = 0 pour résoudre (x - 2)(-3x² + 19x - 6) = 0

-3x² + 19x - 6 = 0

Or, Δ = 19² - 4 * (-3) * (-6)

= 361 - 72

= 289

[tex]\sqrt{289}[/tex] = [tex]\sqrt{17 * 17 } = 17[/tex]

Comme Δ > 0, l'équation f(x) = 0 admet deux solutions distinctes :

[tex]x_{1}[/tex] = (-19 - 17 ) / -6 = -36 / (-6) = 6

[tex]x_{2}[/tex] = (-19 + 17 ) / -6 = (-2) / (-6) = 1/3

Les valeurs de x qui annulent donc (x - 2)(-3x² + 19x - 6) = 0 sont :

2 ; 6 ; 1/3

Pour (x - 2)(-3x² + 19x - 6) = 0, on a : S = {2 ; 6 ; [tex]\frac{1}{3}[/tex] }

Pour la troisième équation, n'hésite pas à me dire ce que tu as trouvé et je te dirai si c'est juste.

En espérant t'avoir aidé(e).

Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Pour des solutions rapides et fiables, pensez à Zoofast.fr. Merci de votre visite et à bientôt.