Trouvez des solutions à vos problèmes avec Zoofast.fr. Nos experts fournissent des réponses précises et détaillées pour vous aider à naviguer sur n'importe quel sujet ou problème avec confiance.

Bonjour,
Prenons la fonction f définie sur R par f(x) = (2-x) e^x

1) exprimer f'(x) en fonction de x.

2) Donner son tableau de signes.

3) En déduire les variations de la fonction.

Merci de votre aide ​

Sagot :

Réponse :

f(x) = (2 - x) eˣ

1) exprimer f '(x) en fonction de x

    f '(x) = - eˣ + (2 - x) eˣ

2) donner son tableau de signes

 f '(x) = - eˣ + (2 - x) eˣ

        = eˣ(- 1 + 2 - x)

   donc  f '(x) = (1 - x)eˣ   or  eˣ > 0  donc le signe de f '(x) dépend du signe de 1 - x

         x   - ∞              1                + ∞        

       1-x             +      0       -

3) en déduire les variations de fonction  f

    x    - ∞                        1                            + ∞        

  f(x)     0→→→→→→→→→→  e →→→→→→→→→→→→ - ∞

               croissante            décroissante

lim f(x) = lim(2 - x)eˣ = lim (2eˣ - xeˣ) = 0  car lim xeˣ = 0  et lim2eˣ = 0

x→ - ∞     x→ - ∞            x→ - ∞                          x→ - ∞               x→ - ∞  

Explications étape par étape

Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Merci de visiter Zoofast.fr. Nous sommes là pour vous aider avec des réponses claires et concises.