Zoofast.fr vous connecte avec des experts prêts à répondre à vos questions. Posez n'importe quelle question et recevez des réponses immédiates et bien informées de notre communauté d'experts dévoués.
Sagot :
Explications étape par étape:
Salut, pour le 1 : Notons xA, l'abscisse du point A. Comme les 2 courbes se coupent en A (xA, 2), alors f(xA) = 2 et g(xA) = 2. D'où xA^2 = 2, ce qui équivaut à xA = rac(2) (pas négatif, on le voit sur le graphique et a / xA = 2, d'où a = 2*xA = 2*rac(2).
Conclusion : a vaut 2*rac(2).
Pour le 2 : (AB) et (CD) sont parallèles si et seulement si les coefficients directeurs respectifs de ces 2 droites sont égaux. Soit f(x) = 1/x, la fonction inverse, avec a, b, c et d abscisses respectives de A, B, C et D. Alors les coordonnées de ces points sont A(a, (1/a)), B(b, (1/b)), C(c, (1/c)) et D(d, (1/d)).
Coeff directeur de AB : [yB - yA] / [xB - xA] = [(1/b) - (1/a)] / [b - a] = [ (a-b) / ab] / [b - a] = - 1 / ab.
De même pour CD : [yD - yC] / [xD - xC] = - 1 / cd.
On résout alors : - 1 / ab = - 1 / cd d'où 1/ab = 1/cd et ab = cd.
Donc (AB) et (CD) sont parallèles si et seulement si ab = cd.
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Chaque question trouve sa réponse sur Zoofast.fr. Merci et à bientôt pour d'autres solutions fiables.