Obtenez des conseils d'experts et des connaissances communautaires sur Zoofast.fr. Posez n'importe quelle question et recevez des réponses rapides et bien informées de la part de notre communauté d'experts expérimentés.

On considere 2 solides:

-Un pave droit de hauteur 2 cm et de base carrée de cote 3 cm, surmonte d'une pyramide de hauteur variable x cm;

-Un cylindre de hauteur x cm de base un cercle de rayon 4 cm. on veut determiner la hauteur x telles que les deux solides aient le meme volume

 

1/ Montrer les volumes V1 et V2 de ces solides, en fonction de x, sont donees par V1 = 3x + 18 et V2 = 4pi x.

2/ On note V1 = f1(x) et V2 = f2 (x)

a) etudier les fonctions f1 et f2 ainsi définies sur [ 0; + infini [ (nature, sens de variation ).

b) representer c fonction dans un repere octogonal : 1 cm pour 1 e,n abscisse et cm pour en ordonee

3/ determiner algébriquement la valeur de la hauteur rendant les deux volumes egaux. donner la valeur exate, puis la valeur appreochee a 0.1 pres. Faire une verification graphique.

Sagot :

On considere 2 solides:

-Un pave droit de hauteur 2 cm et de base carrée de cote 3 cm, surmonte d'une pyramide de hauteur variable x cm;

-Un cylindre de hauteur x cm de base un cercle de rayon 2 cm. on veut determiner la hauteur x telles que les deux solides aient le meme volume

 

1/ Montrer les volumes V1 et V2 de ces solides, en fonction de x, sont donees par V1 = 3x + 18 et V2 = 4pi x.

V1=V(pavé)+V(pyramide)

     =2*3*3+3*3*x/3

     =18+3x

 

V2=V(cylindre)

    =π*4*x

    =4πx

 

2/ On note V1 = f1(x) et V2 = f2 (x)

a) etudier les fonctions f1 et f2 ainsi définies sur [ 0; + infini [ (nature, sens de variation ).

f1(x)=3x+18

f1 est affine et croissante

 

f2(x)=4πx

f2 est linéaire et croissante

 

b) representer c fonction dans un repere octogonal

figure laissée au lecteur...

 

3/ determiner algébriquement la valeur de la hauteur rendant les deux volumes egaux. donner la valeur exate, puis la valeur appreochee a 0.1 pres. Faire une verification graphique.

f1(x)=f2(x)

donc 3x+18=4πx

donc (3-4π)x=-18

donc x=18/(4π-3)

donc x=1,88 cm