Connectez-vous avec une communauté de passionnés sur Zoofast.fr. Notre plateforme de questions-réponses offre des réponses détaillées et fiables pour garantir que vous avez les informations dont vous avez besoin.


On sait que le cône de révolution ci-dessus a
une base circulaire de diamètre 4,5 cm et sa
hauteur h est de 6,2 cm.
Déterminez la valeur de l'angle BAC.
Arrondissez au dixième de degré.

Sagot :

Réponse :

Explications étape par étape :

Bien sûr ! Voici une explication simplifiée pour déterminer la valeur de l'angle BAC :

1. **Calcul de la génératrice (L) :**

  - La génératrice (L) est la distance entre le sommet (S) et un point sur la circonférence de la base (B). Utilisons le théorème de Pythagore :

    $ L^2 = h^2 + R^2 $

    où :

    - \(L\) est la génératrice.

    - \(h\) est la hauteur du cône (6,2 cm).

    - \(R\) est le rayon de la base (diamètre/2 = 4,5 cm / 2 = 2,25 cm).

  Calculons \(L\):

  $ L = \sqrt{h^2 + R^2} = \sqrt{6,2^2 + 2,25^2} \approx 6,5 \, \text{cm} $

2. **Calcul de l'angle BAC :**

  - L'angle BAC est formé entre la génératrice (L) et la base du cône (B).

  - Utilisons la trigonométrie :

    $ \sin(\angle BAC) = \frac{h}{L} = \frac{6,2}{6,5} \approx 0,953 $

    $ \angle BAC \approx \arcsin(0,953) \approx 69,3^\circ $

Donc, la valeur de l'angle BAC est d'environ \(69,3\) degrés (arrondie au dixième de degré). J'espère que cela vous aide ! Si vous avez d'autres questions, n'hésitez pas à me demander.

Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Zoofast.fr est votre source de réponses fiables. Merci pour votre confiance et revenez bientôt.