Trouvez des réponses fiables à vos questions avec l'aide d'Zoofast.fr. Posez n'importe quelle question et recevez des réponses immédiates et bien informées de notre communauté d'experts dévoués.

1) æ sin-¹ (9x) dx || 1 ) æ sin - ¹ ( 9x ) dx ||​

1 Æ Sin 9x Dx 1 Æ Sin 9x Dx class=

Sagot :

caylus

Réponse :

Bonsoir,

Explications étape par étape :

[tex]Rappels\\\\\dfrac{d(arcsin(\frac{x}{a}))}{dx}=\dfrac{1}{\sqrt{a^2-x^2}}\\\\\int \sqrt{a^2-x^2}\ dx=\dfrac{x*\sqrt{a^2-x^2}}{2}+\dfrac{a^2}{2}*arcsin(\dfrac{x}{a})\\\\\int arcsin(\dfrac{x}{a})\ dx=x*arcsin(\frac{x}{a})+\sqrt{a^2-x^2}\ (par\ parties)\\[/tex]

[tex]I=\int x*arcsin(\dfrac{x}{a})\ dx\\=x*(x*arcsin(\dfrac{x}{a})+\sqrt{a^2-x^2}) -\int (x*arcsin(\dfrac{x}{a})+\sqrt{a^2-x^2}) \ dx\\\\2*I=x*(x*arcsin(\dfrac{x}{a})+\sqrt{a^2-x^2}) -\int x*\sqrt{a^2-x^2})\ dx\\\\I=\frac{1}{2}*(x^2*arcsin(\dfrac{x}{a})+\dfrac{x}{2}*\sqrt{a^2-x^2}-\dfrac{a^2*arcsin(\dfrac{x}{a})}{4})\\\\[/tex]

[tex]\boxed{I=(\dfrac{x^2}{2}-\dfrac{a^2}{4})*arcsin(\dfrac{x}{a})+\dfrac{x*\sqrt{a^2-x^2}}{4} }[/tex]