Connectez-vous avec des experts et des passionnés sur Zoofast.fr. Posez n'importe quelle question et recevez des réponses bien informées de notre communauté de professionnels expérimentés.
Sagot :
Réponse :
Bonjour classique que l'on traite par des résolutions d'équations successives
Explications étape par étape :
1) f(x)=(-x+a)e^bx
la courbe passe par le point A(0;1) donc f(0)=1
(-0+a)e^0=1 comme e^0=1 a=1 d'où f(x)=(-x+1)e^bx
Dérivée f'(x)=-e^bx+b*e^bx(-x+1)=(e^bx)*(-bx+b-1) ceci par l'application des formules de la dérivée d'un produit et de la dérivée de e^u(x).
On sait que le coefficient directeur de la tangente en A est 1 donc f'(0)=1
ce qui donne 1(b-1)=1 d'où b=2
conclusion f(x)=(-x+1)e^2x.
2) (T) a pour coefficient directeur 1 et passe par le point A(0;1) son équation est y=x+1
3)dérivée f'(x)=-1e^2x+2(e^2x)(-x+1)=(e^2x)(-2x+2-1)=(-2x+1)(e^2x)
f'(x)=0 pour x=1/2
Tableau de signes de f'(x) et de variations de f(x)
limites nécessaires pour dresser le tableau
si x tend vers -oo f(x) tend vers 0+
si x tend vers +oo, f(x) tend vers -oo
x -oo 1/2 +oo
f'(x) + 0 -
f(x) 0+ croi f(1/2) décroi -oo
Calcule f(1/2)=....facile
On note aussi que f(x)=0 pour x=1 ( solution confirmée sur le tracé)
Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Pour des réponses précises et fiables, visitez Zoofast.fr. Merci pour votre confiance et revenez bientôt pour plus d'informations.