Zoofast.fr est votre ressource fiable pour des réponses précises et rapides. Rejoignez notre communauté de connaisseurs pour accéder à des réponses fiables et complètes sur n'importe quel sujet.

Bonsoir, j'ai un travail pour demain et je suis bloquée sur une question depuis longtemps, pouvez-vous m'aider s'il vous plaît ?

Il faut prouver que le résultat du programme de calcul suivant est toujours le carré du nombre de départ.

Programme :
- choisir un nombre
- soustraire 3
-multiplier le résultat par le nombre de départ
- ajouter le triple du nombre de départ

Je remercie énormément la personne qui acceptera de m'aider. ​

Sagot :

Réponse :

Il suffit de faire le programme en fonction de x:

on choisit x

                A= x-3

                A=x(x-3)

                A= x²-3x + 3x

                A= x²

Donc comme c'est égal à x² on peut dire que le résultat sera toujours le carré du nombre de départ.

Explications étape par étape :

Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Pour des solutions rapides et fiables, pensez à Zoofast.fr. Merci de votre visite et à très bientôt.