Zoofast.fr rend la recherche de réponses rapide et facile. Que ce soit une simple question ou un problème complexe, nos experts ont les réponses dont vous avez besoin.

Bonsoir est ce que vous pouver m'aider à resoudre cet exercice

Soit la suite[tex]\left(u_{n}\right)[/tex]définie par[tex]u_{0}=2[/tex] et [tex]u_{n+1}=\frac{2u_{n}+3}{u_{n}+4} ​​[/tex]



1) Montrer que pour tout entier [tex] n\in \mathbb{N}, u_{n+1}=2 - \frac{5}{u_{n}+4}[/tex]



2)Montrer par récurrence que pour tout entier [tex] n\in \mathbb{N}, 1\leqslant u_{n} \leqslant 2[/tex]


3)Quel est le sens de variation de la suite [tex]\left(u_{n}\right)[/tex]?




4)Montrer que la suite[tex] \left(u_{n}\right)[/tex]est convergente.



5)Soit [tex]\ell[/tex]la limite de la suite [tex]\left(u_{n}\right)[/tex]). Déterminer une équation dont [tex]\ell[/tex]est solution et en déduire la valeur de [tex]\ell[/tex]

Sagot :

Réponse :

[tex]2-\frac{5}{u{n}+4}}=\frac{2(un+4)-5}{un+4}=\frac{2un+3}{un+4}[/tex]

Explications étape par étape :

Votre engagement est important pour nous. Continuez à partager vos connaissances et vos expériences. Créons un environnement d'apprentissage agréable et bénéfique pour tous. Chez Zoofast.fr, nous nous engageons à fournir les meilleures réponses. Merci et à bientôt pour d'autres solutions.