Bonjour, j'ai un DM de maths à rendre, mais je ne suis vraiment pas bon dans ce domaine et je me demandais si on pouvais me le faire. Merci beaucoup !! ( C'est du niveau 2nd )
On considère un carré ABCD de côté 10 cm. Sur le côté [ AB ], on place un point L.
On pose AL = x ( en cm ) et on place sur[ DA ] un point P tel que DP = x cm. On construit alors le triangle LCP.
Le but est de déterminer s'il existe un triangle LCP d'aire minimale et si oui lequel.
on appelle f la fonction qui à tout x de [ o ; 10 ] associe l'aire de LCP.
1.a. Exprimer en fonction de x les longueurs des segments AL, BL, DP puis AP.
b. Exprimer en fonction de x les aires des triangles ALP, LBC et CDP.
c. En déduire l'expression f(x) de l'aire du triangle LCP.
2.a. Justifier que pour tout x de [ 0 ; 10 ], f(x) > 37,5
b. Peut-on avoir f(x)= 37,5
c. Existe-t-il un triangle LCP d'aire minimale ?
Si oui, préciser les propositions des points L et P. ( c'est-à-dire préciser les longueurs AL et AP )
( Aire d'un triangle = ( base x hauteur ) / 2 )
On considère un carré ABCD de côté 10 cm. Sur le côté [ AB ], on place un point L.
On pose AL = x ( en cm ) et on place sur[ DA ] un point P tel que DP = x cm. On construit alors le triangle LCP.
Le but est de déterminer s'il existe un triangle LCP d'aire minimale et si oui lequel.
on appelle f la fonction qui à tout x de [ o ; 10 ] associe l'aire de LCP.
1.a. Exprimer en fonction de x les longueurs des segments AL, BL, DP puis AP.
b. Exprimer en fonction de x les aires des triangles ALP, LBC et CDP.
c. En déduire l'expression f(x) de l'aire du triangle LCP.
2.a. Justifier que pour tout x de [ 0 ; 10 ], f(x) > 37,5
b. Peut-on avoir f(x)= 37,5
c. Existe-t-il un triangle LCP d'aire minimale ?
Si oui, préciser les propositions des points L et P. ( c'est-à-dire préciser les longueurs AL et AP )
( Aire d'un triangle = ( base x hauteur ) / 2 )