Obtenez des solutions complètes à vos questions avec Zoofast.fr. Trouvez des réponses précises et détaillées à vos questions de la part de nos membres de la communauté expérimentés et bien informés.

Je renvoie cette question carla bonne photo ne s'est pas envoyé
Bonjour, je suis en seconde et j'ai un DM de maths à rendre avant 12h et ça fait depuis 8h que j'essaie de le faire mais je n'y arrive pas.
Pouvez-vous m'aider s'il vous plaît ?

1)

2) Ils faudrait utilisé la symétrie ? Quel propriété ?

3) I(1;0) ?

4) D(-5;1) ?

5) Isocèle mais comment expliquer ?

et le reste j'ai pas réussi

Merci d'avance

Je Renvoie Cette Question Carla Bonne Photo Ne Sest Pas Envoyé Bonjour Je Suis En Seconde Et Jai Un DM De Maths À Rendre Avant 12h Et Ça Fait Depuis 8h Que Jess class=

Sagot :

Réponse :

Bonjour

Explications étape par étape

Tu t'y prends tard !!

2)

En vecteurs :

AB(5-3;-1-3) ==>AB(2;-4)

BC(1-5;-3+1) ==>BC(-4;-2)

Donc :

AB²=2²+(-4)²=20

BC²=(-4)²+(-2)²=20

Comme il s'agit de mesure , AB²=BC² implique AB=BC ( en mesures).

Donc ABC est isocèle en B.

Vect AC(1-3;-3-3) ==>AC(-2;-6) donc :

AC²=(-2)²+(-6)²=40

Par ailleurs : AB²+BC²=20+20=40

Donc AC²=AB²+BC²

D'après la réciproque de Pythagore , ABC est rectangle en B.

Donc ABC rectangle-isocèle en B.

3)

xI=(xA+xC)/2=(3+1)/2=2 et idem yI.

On trouve : I(2;0)

4)

Donc I est le milieu de [BD]. OK ?

xI=(xB+xD)/2 et idem pour yI=....

Ce qui donne :

2=(5+xD)/2 ==>xD=4-5=-1

0=(-1+yD)/2 ==>yD=1

Donc :

D(-1;1)

5)

Un quadrilatère n'est jamais isocèle !!!

ABCD a ses diagonales qui se soupent en leur milieu I : c'est donc un parallélogramme.

Ce parallélogramme a un angle droit en B : c'est donc un rectangle.

Ce rectangle a 2côtés [AB) et [CD] consécutifs de même mesure : c'est donc un carré!

6)

a)

En  vecteurs :

DA(3+1;3-1) ==>DA(4;2)

AE(5-3;4-3) ==>AE(2;1)

2AE(4;2)

Donc :

DA=2AE

qui, prouve que les vecteurs DA et AE sont colinéaires avec A en commun.

Donc les points D, A et E sont alignés.

b)

On sait que ABCD est un carré donc l'angle DAB est droit et donc la droite (DE) est perpendiculaire à [BA] qui est un rayon du cercle C , ce qui prouve que (DE) est la tangente à C en A.

7)

a)

En vecteurs :

BF(7-5;3+1) ==>BF(2;4) donc :

BF²=2²+4²=20

Donc BF=BA ( en mesures ) donc F sur le cercle C.

b)

Il faut montrer que le triangle EFB est rectangle en F.

En vecteurs :

EF(7-5;3-4) ==>EF(2;-1) donc EF²=2²+(-1)²=5

BE(5-5;4+1) ==>BE(0;5) donc BE²=0²+5²=25

BF²=20 ( voir 7)a))

BF²+EF²=20+5=25

Donc :

BE²=BF²+EF²

D'après la réciproque du ..., le triangle EFB est rectangle en F.

Donc (BF) est perpendiculaire à (EF) ; ce qui prouve que (EF) est tangente au cercle C en F.