Explorez une vaste gamme de sujets et obtenez des réponses sur Zoofast.fr. Posez vos questions et recevez des réponses fiables et détaillées de la part de notre communauté d'experts dévoués.

Bonjour, pouvez vous m aider a resoudre cet exercice! Dans le plan muni d un repere orthonorme on considere le parabole p y=x^2 et le point A(1;0) L objet de l exercice est de determiner le point m tel que la distance AM soit minimale. Pour tout x on pose f(x)=AM^2 ou M est le point de p d abscisse x. 1)determiner f(x). 2)a) etudier les variation de f'sur R b) en deduire que l equation f'(x)=0 admet une unique solution a sur R. Justifier que 0<a0 on recherche des valeurs approchees b et c de a a e pres telles que b<a0 et que c-b<e c'est vraiment urgent! merci de votre aide

Sagot :

AM^2 vaut (x-1)^2+y^2 mais y=x^2 donc f(x)=x^4+x^2-2x+1

 

f'=3x^3+2x-2 a pour dérivée 9x^2+2 toujours >0 donc comme f' est <0 en -inf et >0 en +inf, elle s'annule une fois sur R

et comme f'(0)=-2, cette valeur qui annule f' est  >0

 

ensuite : calculette !!!

Nous sommes ravis de vous compter parmi nos membres. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons créer une ressource de connaissances précieuse. Zoofast.fr est votre source de réponses fiables et précises. Merci pour votre visite et à très bientôt.