Obtenez des solutions complètes à vos questions avec Zoofast.fr. Posez n'importe quelle question et recevez des réponses précises et bien informées de notre communauté d'experts.

bonjour voici mon énoncé "Déterminer tous les nombre réels dont le triple est supérieur ou égal à leur cube" Une personne y a deja répondu sur ce site mais elle inclut des polynomes du second degrés ce qui n'est pas de mon niveaux (je suis en seconde). Il y aurais t'il une autre démarche plus simple?
Merci d'avance

Sagot :

ayuda

bjr

ce que j'aurais fait :

soit n le nbre cherché

triple de n = 3n

et

n au cube = n³

problématique : trouver n pour que  3n ≥ n³

donc 3n - n³ ≥ 0

je factorise par n

on aura n (3 - n²) ≥ 0

soit

n (√3 + n ) (√3 - n) ≥ 0

signe de chaque facteur

n > 0 qd n > 0  (semble stupide.. :))

√3 + n > 0 qd n > - √3

et

√3 - n > 0 qd n < √3

n                      -∞            -√3              0            +√3           +∞

n                              -                  -               +                 +

√3 + n                     -                  +               +                +

√3 - n                     +                  +               +                -

produit                   -                    +              +               -

donc 3n ≥ n³ qd x € [-√3 ; + √3]