Obtenez des réponses claires et concises à vos questions sur Zoofast.fr. Explorez des milliers de réponses vérifiées par des experts et trouvez les solutions dont vous avez besoin, quel que soit le sujet.

Bonjour je galère un peu sur cette question :
Soit f la fonction définie sur ℝ par f(x) = 15x³ - 34x² - 47x + 42

1) Montrer que 3 est une racine de f.

2)Déterminer les valeurs des nombres réels a, b et c tels que pour tout réel x, on a f(x) = (x - 3)(ax² + bx + c)

3) Résoudre dans ℝ l'équation f(x) = 0

4) En déduire le tableau de signes de f(x) puis résoudre dans ℝ l'inéquation f(x) ≤ 0.


Merci infiniment à ceux qui m'aideront.

Sagot :

Bonjour,

f(x) = 15x³ - 34x² - 47x + 42

1) f(3) = 15 × 3³ - 34 × 3² - 47 × 3 + 42

⇔f(3) = 15 × 27 - 34 × 9 - 47 × 3 + 42

⇔f(3) = 405 - 306 - 141 + 42

⇔ f(3) = 447 - 447

⇔ f(3) = 0

3 est donc une racine de f

2) f(x) = (x - 3)(ax² + bx + c) = 15x³ - 34x² - 47x + 42

par identification : a = 15 et c = 42/(-3) = -14

il nous reste à résoudre l'équation -45x² + bx² = -34x² soit x²(-45 + b) = -34x² on simplifie les x² on obtient ainsi -45 + b = -34 ⇔ b = -34 + 45 = 11

on a ainsi f(x) = (x - 3)(15x² + 11x - 14) = 0

3) f(x) = 0 ⇔ (x - 3)(15x² + 11x - 14) = 0

D'après la première question : 3 est une racine. Il nous reste à déterminer les autres racines s'il y en a

15x² + 11x - 14 = 0

a = 15 b = 11 et c = -14

on a ainsi : ∆ = b² - 4 × a × c

⇔ ∆ = 11² - 4 × 15 × (-14) = 961

∆ > 0 l'équation admet donc 2 autres racines :

x1 = (-b - √∆)/2a = (-11 - 31)/30 = -42/30 = -7/5

x2 = (-b + √∆)/2a = (-11 + 31)/30 = 20/30 = 2/3

S = { -7/5 ; 2/3 ; 3 }

4) Ce n'est vraiment pas facile de faire un tableau de signe avec son clavier je vais faire au mieux pour que ce soit lisible :

x | -∞ -7/5. 2/3. 3. +∞

f(x) | - 0 + 0 - 0 +

→ À l'aide du tableau de signe tu peux résoudre l'inéquation tout seul