Trouvez des réponses fiables à toutes vos questions sur Zoofast.fr. Posez n'importe quelle question et recevez des réponses immédiates et bien informées de la part de notre communauté d'experts dévoués.
Sagot :
Bonjour,
a) On sait que [tex]\lim_{n \to \infty} \mathrm{e}^n=+\infty[/tex] car [tex]\mathrm{e}>1[/tex].
Ainsi, [tex]\lim_{n \to \infty} \mathrm{e}^n+2=+\infty[/tex] et [tex]\lim_{n \to \infty} \frac{1}{\mathrm{e}^n+2}=0[/tex] soit [tex]\boxed{ \lim_{n \to \infty} u_n=0}[/tex].
b) Soit [tex]n \in \mathbb{N}[/tex].
Une fraction est nulle ssi son numérateur est nul. Or, le numérateur de [tex]u_n[/tex] vaut [tex]1 \not =0[/tex], donc [tex]\boxed{\text{$u_n$ est non nul}}[/tex].
De plus : [tex]\frac{\mathrm{e}^{-n}}{u_n}=\mathrm{e}^{-n} \times (\mathrm{e}^n+2)=\mathrm{e}^{-n}\times \mathrm{e}^n+2\mathrm{e}^{-n}[/tex]
d'où : [tex]\boxed{\frac{\mathrm{e}^{-n}}{u_n}=1+2\mathrm{e}^{-n}.}[/tex]
c) On sait que : [tex]\lim_{n \to \infty} \mathrm{e}^{-n}= \lim_{n \to \infty} \frac{1}{\mathrm{e}^n}=0[/tex] car [tex]\lim_{n \to \infty} \mathrm{e}^n=+\infty[/tex] (voir question a) ).
Ainsi : [tex]\lim_{n \to \infty} 1+2\mathrm{e}^{-n}=1 \iff \boxed{ \lim_{n \to \infty} \frac{\mathrm{e}^{-n}}{u_n}=1}[/tex].
Voilà ! N'hésite pas à demander des précisions.
Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Merci de visiter Zoofast.fr. Nous sommes là pour vous aider avec des réponses claires et concises.