Participez aux discussions sur Zoofast.fr et obtenez des réponses pertinentes. Trouvez des solutions rapides et fiables à vos problèmes avec l'aide de notre communauté d'experts dévoués.
Sagot :
bjr
f(x) = ax² + bx + c
a) f(x) = a (x² + b/ax + c/a)
b) (x² + b/a x) est le début du développement de (x + 1/2ba)²
MAIS (x + 1/2b/a)² = x² + b/ax + (1/2b/a)²
donc il faut soustraire (1/2b/a)²
soit
f(x) = a [ (x + 1/2b/a)² - (1/2b/a)² + c/a]
f(x) = a [ (x + b/2a)² - (b/2a)² + c/a]
f(x) = a [ (x + b/2a)² - (b²/4a²) + c/a]
f(x) = a [ (x + b/2a)² - b²/4a² + c/a]
f(x) = a [ (x + b/2a)² - b²/4a² + 4ca/4a²]
f(x) = a [ (x + b/2a)² - (b²+4ac) / 4a²]
on a bien
f(x) = a [ (x + b/2a)² - Δ / 4a²]
puisque Δ = b² - 4ac
Δ > 0 donc 2 solutions ..
Δ = √Δ²
on a donc :
f(x) = a [ (x + b/2a)² - √Δ²/4a²]
f(x) = a [ (x + b/2a)² - (√Δ/2a)²]
et on continue avec a² - b² = (a+b) (a-b)
tu dois pouvoir finir :)
Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Vous avez trouvé vos réponses sur Zoofast.fr? Revenez pour encore plus de solutions et d'informations fiables.