Trouvez des solutions à vos problèmes avec Zoofast.fr. Rejoignez notre plateforme pour recevoir des réponses rapides et précises de la part de professionnels expérimentés dans divers domaines.

Bonjour svp j’ai un devoir de mathématiques type bac vraiment trop dur sachant que j’ai aucune notion en math svp faite le mois je vous donnerai tout mes points carrément



1) Tracer la courbe de la fonction définie sur [-5 ; 5] par f(x)=2x² +3x -3 (Vous pouvez faire un tableau de valeur de 1 en 1, vous aider de la calculatrice etc...)
2) Vous tracer à la main la tangente T1 à la courbe en x=1 et T2 la tangente à la courbe en x= - 0,75
3) Vous déterminez graphiquement les équations de droite de ces tangentes.

Sagot :

bjr

1) on fait un tableau des valeurs de 1 en 1

x          -5       -4       -3     -2      -1       0       1       2      3       4       5

f(x)      32       17        6     -1      -4       -3      2      11

 

on calcule f(-5) en remplaçant x par -5 dans 2x² + 3x - 3

f(-5) = 2(-5)² + 3(-5) - 3 = 50 - 15 - 3 = 32

f(-4) = 2(-4)² + 3(-4) - 3 = 32 - 12 - 3 = 17

f(-3) = 2(-3)² +3(-3) - 3 = 18 - 9 - 3 = 6

f(-2) = 2(-2)² + 3(-2) - 3 = 8 - 6 - 3 = -1

f(-1) = -4

f(0) = -3

je te laisse finir les calculs

on place les points de coordonnées

(-5 ; 32) ; (-4 ; 17) ; (-3 ; 6) ; (-2 ; -1) ; (-1 ; -4) ; (0 ; -3)   etc.

je ne sais pas comment tu vas tracer cette courbe de -5 à 5 à cause des grandes ordonnées. Il faudrait sur l'axe des ordonnées une unité plus petite que sur l'axe des abscisses.

tu peux t'aider de l'image que j'ai mise

2)

les tangentes

• tu traces à la règle la tangente T1 au point A(1 ; 2)

elle coupe l'axe des ordonnées en -5

je te donne son équation y = 7x -5

• pour la tangente T2 je ne vois pas comment on peut faire sans calculs

(si tu les veux demande-les moi)

le point d'abscisse -0,75 est le sommet de la parabole

l'ordonnée du sommet est f(-0,75) = -4,125

la tangente T2 est horizontale

son équation   y = -4,125

View image jpmorin3

Réponse :

Explications étape par étape :

■ f(x) = 2x² + 3x - 3 sur [ -5 ; +5 ]

dérivée f ' (x) = 4x + 3 positive pour x > - 0,75

■ tableau :

  x --> -5     -3    -1,5    -0,75     0     1       3       5

varia->     décroissante   0        croissante

f(x) --> 32     6     -3     -4,125   -3     2      24    62

■ Tangente au point (1 ; 2) :

   y = 7x - 5 .

   ( cette Tgte passe par le point (0 ; - 5) )

■ Tgte horizontale au Minimum (-0,75 ; - 4,125) :

  y = - 4,125 .

Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Chaque contribution que vous faites est appréciée. Zoofast.fr s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses mises à jour.