Obtenez des conseils d'experts et des connaissances communautaires sur Zoofast.fr. Obtenez des conseils étape par étape pour toutes vos questions techniques de la part de membres de notre communauté dévoués.

f(x) =  \frac{1}{4} + x^{2}  + x - 3

        

 Determiner les solutions de l'equation f(x) = -3 et f(x) = -4

     

  Aide : developper (  1/2 x + 1 )^{2}

 

Merci bcp a ce qui m'aide !

Sagot :

Bonsoir,

[tex]f(x) = \dfrac{1}{4} x^{2} + x - 3[/tex]

1) Résoudre f(x) = -3.

[tex]f(x) =-3\Longleftrightarrow \dfrac{1}{4} x^{2} + x - 3=-3\\\\\Longleftrightarrow \dfrac{1}{4} x^{2} + x =0\\\\\Longleftrightarrow x(\dfrac{1}{4} x + 1)=0\\\\\Longleftrightarrow x=0\ \ ou\ \ \dfrac{1}{4} x + 1=0\\\\\Longleftrightarrow x=0\ \ ou\ \ \dfrac{1}{4} x =-1\\\\\Longleftrightarrow x=0\ \ ou\ \ x =-4.[/tex]

2) Résoudre f(x) = -4

On sait que  [tex](\dfrac{1}{2}x+1)^2=\dfrac{1}{4}x^2+x+1[/tex]

Donc  nous avons
[tex]f(x) = \dfrac{1}{4} x^{2} + x - 3 \\\\f(x)= \dfrac{1}{4} x^{2} + x +1-4 \\\\f(x)=(\dfrac{1}{2} x+1)^2-4[/tex]

Par conséquent : 

[tex] f(x) = -4\Longleftrightarrow (\dfrac{1}{2} x+1)^2-4=-4\\\\ f(x) = -4\Longleftrightarrow (\dfrac{1}{2} x+1)^2=0\\\\ f(x) = -4\Longleftrightarrow \dfrac{1}{2} x+1=0\\\\ f(x) = -4\Longleftrightarrow \dfrac{1}{2} x=-1\\\\ f(x) = -4\Longleftrightarrow x=-2[/tex]
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Nous espérons que vous avez trouvé ce que vous cherchiez sur Zoofast.fr. Revenez pour plus de solutions!