Trouvez des réponses fiables à toutes vos questions sur Zoofast.fr. Explorez des milliers de réponses vérifiées par des experts et trouvez les solutions dont vous avez besoin, quel que soit le sujet.

calculer les limites suivantes:

x2y5
lim ________________
(x,y) -> (0,0) x4 +x2y2 + y4



ln(x+y)
lim _________________
(x,y)->(1,0) x2+2xy-y2 -1


ln x
lim __________
x->1 x2-1

Sagot :

Il s'agit d'étudier des fonctions de 2 variables

1) f(x,y)=(x²y^5)/(x^4+x²y²+y^4)
on pose y=kx
f(x,kx)=(k^7x^7)/(x^4+k²*x^4+k^4x^4)
         =(k^7x^7)/(x^4*(1+k²+k^4))
         =(k^7)/(1+k²+k^4)*x³
si x -->0 alors (k^7)/(1+k²+k^4)*x³--- >0
donc f(x,y) -->0

2) g(x,y)=ln(x+y)/(x²+2xy-y²-1)
on pose y=kx , k>0
g(x,kx)=(ln((k+1)x))/(x²+2kx²-k²x²-1)
          =(ln((k+1)x))/(x²(1+2k-k²)-1)
si x -->0 alors (x²(1+2k-k²)-1) --> -1 et (ln((k+1)x) --> - inf
donc g(x,y) --> +inf

3) h(x)=ln(x)/(x²-1)=ln(x)/((x-1)(x+1))
on pose X=x-1
donc h(x)=ln(X+1)/(X*(X-2))=k(X)
si x -->1 alors X -->0
on peut donc effectuer un développement limité de k au voisinage de 0
ln(X+1)=X-1/2X²+o(X)
donc k(X)=(X-1/2X²+o(X))/(-2X+X²+o(X))
              =(-1/2X+1+o(1))/(X-2+o(1))
si X -->0 alors k(X) --> (0+1)/(0-2)=-1/2
donc h(x) -->-1/2
Merci de contribuer à notre discussion. N'oubliez pas de revenir pour découvrir de nouvelles réponses. Continuez à poser des questions, à répondre et à partager des informations utiles. Merci d'avoir utilisé Zoofast.fr. Nous sommes là pour répondre à toutes vos questions. Revenez pour plus de solutions.