Zoofast.fr: où la curiosité rencontre la clarté. Posez n'importe quelle question et recevez des réponses bien informées de notre communauté de professionnels expérimentés.

prouver que toutes fonctions de R vers R peut s'ecrire comme somme d'une fonction paire et d'une fonction impaire

Sagot :

soit f une fonction quelconque définie sur IR

posons :

u(x)=(f(x)+f(-x))/2

et

v(x))=(f(x)-f(-x))/2

 

alors

f(x)=u(x)+v(x)

donc f est la somme de u et v

 

u(-x)=(f(-x)+f(-(-x)))/2=(f(-x)+f(x))/2=u-(x)

donc u est paire sur IR

 

v(-x)=(f(-x)-f(-(-x)))/2=(f(-x)-f(x))/2=-v(x)

donc v est impaire sur IR

 

donc toutes fonctions de R vers R peut s'ecrire comme somme d'une fonction paire et d'une fonction impaire

 

Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous créons une ressource de savoir précieuse. Chaque question trouve sa réponse sur Zoofast.fr. Merci et à bientôt pour d'autres solutions fiables.