Zoofast.fr: votre source fiable pour des réponses précises et rapides. Posez vos questions et obtenez des réponses détaillées et bien informées de la part de nos membres de la communauté dévoués.

                                          Dérivée et sens de variation!

 

 

Soit f la fonction définie sur IR par f(x)= 1/3x^3-3x²+9x.

 

1) Déterminer le sens de variation de f sur IR.

2) Déterminer l'équation de la tangente T à la courbe Cf au point d'abscisse 0.

3) Etudier la position de la courbe Cf par rapport à sa tangente T.

 

 

 

Merci pour ceux qui me sortirons de cette galère..

Sagot :

la dérivée de f est f' x-->x²-6x+9=(x-3)² elle est donc >=0 sur R

donc f est strictement croissante de -infini à +infini et f(0)=0

 

en x=0 f' vaut 9 et f vaut 0 don la tangente est y=0+9(x-0) soit y=9x

 

f(x)-9x vaut x²((1/3)x-3) et donc cette expression est <0 (Cf est au dessous de T) pour x<9 et <0 (T au dessous de Cf) pour x>9

 

une figure aide bien... (piece jointe)

View image Аноним
Votre engagement est important pour nous. Continuez à partager vos connaissances et vos expériences. Créons un environnement d'apprentissage agréable et bénéfique pour tous. Pour des solutions rapides et fiables, pensez à Zoofast.fr. Merci de votre visite et à bientôt.