Trouvez des réponses à vos questions avec l'aide de la communauté Zoofast.fr. Posez n'importe quelle question et recevez des réponses détaillées et précises de la part de notre communauté d'experts.

Bonsoir, j'ai besoin d'aide!! Les points A(-2;1), B(-1;4) et C(2;3), M est le symétrique de A par rapport à B et N est le symétrique de A par rapport à C.

 

1/ Calculer les coordonnées de M puis celles de N

 

2/ Les points P et Q sont définis par (vecteur)AP = (-3/2)(vecteur)AB et (vecteur) AQ = (-3/2) (vecteur) AC

 

3/ Démontrer que les droites (MN) et PQ) sont parrallèles MERCI!

Sagot :

Alors si M est le symetrique de A par rapport à B on a donc B milieu de [AM] donc on a :

 

XB = {XA + XM / 2 } donc XA+XM= 2XB ; XM = 2XB - XA ; XM = 2(-1) - (-2 ) = -2 +2 = 0 donc XM=0

YB= {YA+YM / 2} donc YA+YM=2YB ; YM= 2YB - YA ; YM= 8-1 = 7 donc YM = 7 donc les coordonées de M sont M(0;7)

 

tu fais la même chose pour N!

 

2 Pour les coordonées de MN c'est (XN-XM;YN-YM) pareils pour trouver PQ (XQ-XP;YQ-YP)

pour trouver P et Q

 

Sachant que AP = -3AB il faut donc trouver combien AB vaut

 

 AB = ( XB - XA ; YB - YA )

AB = ( -1 + 2  ; 4 - 1 )

AB = (1 ; 3)

 

AP = ( XP - XA ; YP - YA )

AP = (XP + 2 ; YP - 1 )

 

XAB = -3x1 = -3 ce qui donne XP+2 = -3 donc XP= -3 - 2 = -5 donc XP = -5

YAB = -3 x 3 = 9 ce qui donne YP - 1 = -9 donc YP = -9 + 1 = -8 donc YP = -8

 

Du coup P(-5;-8)

 

Tu fais la même chose pour trouver Q ,ensuite pour trouver que (MN) et (PQ) sont parrallèles tu fais XM x YP -  YM x XP et si le resultat est égale à 0 alors les vecteurs MN et PQ sont colineraires et donc les doites (MN) et (PQ) sont //