Explorez une vaste gamme de sujets et obtenez des réponses sur Zoofast.fr. Posez vos questions et recevez des réponses complètes et fiables de la part de notre communauté de professionnels expérimentés.

j'ai examen demain...

(fonctions du 1e degré)

On donne es points A(4:6) et B(6:8). établis l'équation de la droite d, parallèle à la droite qui passe par A et B, sachant que d passe par M(2; -3)

Sagot :

bonjour

 

** une équation de droite est la forme y = ax+b

où a est le coefficicent directeur

et b l'ordonnée à l'origine

 

** la droite qui passe par les points A(4; 6) et B(6; 8) a pour coefficicent directeur :

a = (yB-yA) / (xB-xA) = (8-6) /(6-4) = 1

 

** rappel : deux droites // sont le même coeff. directeur.

donc la droite d, parallèle à la droite (AB) , aura pour coeff. directeur 1

son équation sera donc de la forme : y = 1*x + b, soit y = x+b

 

** pour trouver la valeur de b, tu utilises le point M(2; -3) : ses coordonnées vérifient l'équation de d, donc

-3 = 2+b, équivalent à b = -1

 

d'où équation de d : y = x-5

vecAB (6-4;8-6)=(2;2)

soit P(x;y)point de d

vec(PM)(x-2;y-(-3))

les vecteurs sont colinéaires

2(y+3)-2(x-2)=0

y+3-x+2=0

équation cartésienne de d

x-y-5=0