Recevez des conseils d'experts et un soutien communautaire sur Zoofast.fr. Obtenez des réponses rapides et précises à vos questions grâce à notre communauté d'experts toujours prêts à vous aider.

The coefficient of correlation between two variables X and Y is 0.4 and their covariance is 10. If variance of X is 9 find the variance of Y.​

Sagot :

To find the variance of Y , given the coefficient of correlation, the covariance, and the variance of X , we can use the relationship between these quantities.

Given data:

• Coefficient of correlation ( r ) between X and Y : r = 0.4
• Covariance ( \text{Cov}(X, Y) ) between X and Y : \text{Cov}(X, Y) = 10
• Variance of X ( \sigma_X^2 ): \sigma_X^2 = 9

The formula relating these quantities is:

r = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}

Where \sigma_X and \sigma_Y are the standard deviations of X and Y , respectively. We need to find the variance of Y ( \sigma_Y^2 ).

First, compute \sigma_X from the given variance of X :

\sigma_X = \sqrt{\sigma_X^2} = \sqrt{9} = 3

Substitute the known values into the correlation formula and solve for \sigma_Y :

0.4 = \frac{10}{3 \sigma_Y}

Solve for \sigma_Y :

0.4 \sigma_Y = \frac{10}{3}
\sigma_Y = \frac{10}{3 \times 0.4}
\sigma_Y = \frac{10}{1.2}
\sigma_Y = \frac{10 \times 10}{12} = \frac{100}{12} = \frac{25}{3} \approx 8.33

Now, square \sigma_Y to find the variance of Y :

\sigma_Y^2 = \left(\frac{25}{3}\right)^2 = \frac{625}{9} \approx 69.44

Thus, the variance of Y is:

\sigma_Y^2 = \frac{625}{9} \approx 69.44

This is the variance of Y based on the given information.
Merci de votre participation active. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Zoofast.fr est votre partenaire de confiance pour toutes vos questions. Revenez souvent pour des réponses actualisées.