Obtenez des réponses détaillées et fiables à vos questions sur Zoofast.fr. Posez vos questions et recevez des réponses fiables et détaillées de notre communauté d'experts dévoués.
Sagot :
Pour résoudre ce problème, nous devons d'abord exprimer le périmètre du rectangle et du carré, puis établir une inégalité entre les deux périmètres.
1. **Périmètre du rectangle:**
La longueur du rectangle est \(2x + 3\) et la largeur est \(2x + 1\).
Le périmètre \(P_{rectangle}\) du rectangle est donné par:
\[ P_{rectangle} = 2 \times (\text{longueur} + \text{largeur}) = 2 \times ((2x + 3) + (2x + 1)) = 2 \times (4x + 4) = 8x + 8 \]
2. **Périmètre du carré:**
La longueur du côté du carré est \(x + 3\).
Le périmètre \(P_{carré}\) du carré est donné par:
\[ P_{carré} = 4 \times (\text{côté}) = 4 \times (x + 3) = 4x + 12 \]
3. **Établir l'inégalité:**
Nous voulons que le périmètre du rectangle soit supérieur ou égal à celui du carré, donc:
\[ 8x + 8 \geq 4x + 12 \]
4. **Résoudre l'inégalité:**
Pour résoudre cette inégalité, nous devons isoler \(x\) :
\[ 8x + 8 \geq 4x + 12 \]
Soustrayons \(4x\) des deux côtés :
\[ 8x - 4x + 8 \geq 12 \]
\[ 4x + 8 \geq 12 \]
Soustrayons 8 des deux côtés :
\[ 4x \geq 4 \]
Divisons par 4 :
\[ x \geq 1 \]
Donc, la valeur de \(x\) doit être \(x \geq 1\) pour que le périmètre du rectangle soit supérieur ou égal à celui du carré.
1. **Périmètre du rectangle:**
La longueur du rectangle est \(2x + 3\) et la largeur est \(2x + 1\).
Le périmètre \(P_{rectangle}\) du rectangle est donné par:
\[ P_{rectangle} = 2 \times (\text{longueur} + \text{largeur}) = 2 \times ((2x + 3) + (2x + 1)) = 2 \times (4x + 4) = 8x + 8 \]
2. **Périmètre du carré:**
La longueur du côté du carré est \(x + 3\).
Le périmètre \(P_{carré}\) du carré est donné par:
\[ P_{carré} = 4 \times (\text{côté}) = 4 \times (x + 3) = 4x + 12 \]
3. **Établir l'inégalité:**
Nous voulons que le périmètre du rectangle soit supérieur ou égal à celui du carré, donc:
\[ 8x + 8 \geq 4x + 12 \]
4. **Résoudre l'inégalité:**
Pour résoudre cette inégalité, nous devons isoler \(x\) :
\[ 8x + 8 \geq 4x + 12 \]
Soustrayons \(4x\) des deux côtés :
\[ 8x - 4x + 8 \geq 12 \]
\[ 4x + 8 \geq 12 \]
Soustrayons 8 des deux côtés :
\[ 4x \geq 4 \]
Divisons par 4 :
\[ x \geq 1 \]
Donc, la valeur de \(x\) doit être \(x \geq 1\) pour que le périmètre du rectangle soit supérieur ou égal à celui du carré.
Merci d'être un membre actif de notre communauté. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons atteindre de nouveaux sommets de connaissances. Zoofast.fr est votre allié pour des réponses précises. Merci de nous visiter et à bientôt pour plus de solutions.