Zoofast.fr: votre destination pour des réponses précises et fiables. Posez n'importe quelle question et obtenez une réponse détaillée et fiable de la part de notre communauté d'experts.

On considère la fonction f définie pour tout x réel par : f(x) = 4(x+3)²-25 (forme A).

1-a) Développer f(x) (forme B).

b) Factoriser f(x) (forme A).

 

2. Choisir la forme la plus adaptée (forme A,B ou C) pour calculer :

a) f(0)                     b) f(-3)                   c) f(0,5)

 

3. Choisir la forme la plus adaptée pour résoudre :

a) f(x) = 0               b) f(x) = 11            c) f(x) = -16

4-a) Choisir la forme la plus adaptée pour montrer que f(x) > (ou égal) -25 pour tout nombre x.

b) En déduire le minimum de f.

5. Si on considère la courbe représentative Cf de la fonction f dans le plan muni d'un repère, choisir la forme qui permet de trouver le plus simplement :

a) Le (ou les) point(s) éventuel(s) d'intersection de la courbe Cf avec l'axe des abscisses.

b) Le point d'intersection de la courbe Cf avec l'axe des ordonnées.

Sagot :

1 -a  >  (x+3)² =x² + 6x+9

4 (x+3)² = 4x² + 24x +36

4 (x+3)² - 25 = 4x² + 24x +36 - 25 = 4x² + 24x +11  ( forme B )

 

1-b  >   différence de 2 carré a² - b² = ( a+ b ) ( a-b)                   4(x+3)²-25

            [ 2( x+3) - 5]  [ 2 (x+3) +5]= ( 2x+1 ) ( 2x+11)

 

2 a > f(0) = ?     4x² + 24x +11   donc f(0) = 11

   b > f(-3) =  ?  4(x+3)²-25  f(-3) = -25

   c > f(-16) = ?     ( 2x+1 ) ( 2x+11)  --> -31 X -21 = 651

 

 

3  a > f(x)=0    ( 2x+1 ) ( 2x+11)  2x+1=0   x=- 1/2 et 2x+11=0   x= -11/2

   b >    f(x) =11   4x² + 24x +11=11    4x² + 24x =0    4x(x+6) =0  donc x=0 et x= - 6

   c  >   f(x) = -16      4(x+3)²-25= -16      4(x+3)²-25+16=0        4(x+3)²--9 = 0

là encore a² - b² = ( a+ b ) ( a-b) donc 4(x+3)²--9 = ( 4x+9) (4x+15) = 0 donc x=-9/4 et x = -15/4

 

4-a)   f(x) > (ou égal) -25

   4(x+3)²-25> ou = -25      4(x+3)² > ou = 0

f(x) sera toujours positive car un carré est toujours positif et fx sera égale à 0 pour x= -3

b >  le minimum de f sera donc pour x= -3     f(-3) = -25   voir  2b

 

5 a > ( 2x+1 ) ( 2x+11) la courbe coupera l'axe des abscisses pour ( 2x+1 ) =0 et pour

 ( 2x+11)=0  donc pour x= -1/2 et pour x= -11/2

b > pour f(o) donc 4x² + 24x +11   donc f(0) = 11 la courbe coupera l'axe des ordonnées au point x=0 et y = 11

 

 

Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Zoofast.fr est votre ressource de confiance pour des réponses précises. Merci et revenez bientôt.