Trouvez des réponses à vos questions avec l'aide de la communauté Zoofast.fr. Trouvez des réponses détaillées et précises à toutes vos questions de la part de nos membres de la communauté bien informés.

svp comment démontrer que (DJ) est perpendiculaire à (CI) PAR deux méthodes avec ABCD un carré de coté a, avec J milieu de [BC] et I milieu [AB]

Sagot :

Réponse :

Bonjour

Explications étape par étape :

Dessine un carré ABCD de côté "a" avec A en bas à gauche  B à droite et D en haut  pour former le repère orthonormé (A; B; D)

Place les points I et J

Coordonnées des points :

A(0;0) B(a; 0) D(0;a), C(a; a) ,I(a/2; 0) et J(a; a/2)

1) avec les droites (IC)et (DJ)

(DJ) a pour équation  y=(-1/2)x+a

(IC) a pour équation    y=2x-a

Théorème : deux droites du plan sont perpendiculaires si le produit de leur coefficient  directeur =-1  (prog. de 2de)

on note que (-1/2)*2=-1

*****************

2) avec les vecteurs et le produit scalaire (prog. de2de et 1ère)

coordonnées du vecIC :  xIC=xC-xI=1/2 et yIC=1-0=1     vecIC(1/2; 1)

coordonnées du vecDJ:  xDJ= 1  et yDJ=-1/2                 vecDJ(1; -1/2)

théorème: deux vecteurs sont perpendiculaires si leur produit scalaire=0

vecD*vecIC=(1/2)*1+1*(-1/2)=1/2-1/2=0

les droites (DJ) et (CI) sont perpendiculaires.

Réponse :

Explications étape par étape :

Bonjour,

Voici la réponse en pièce-jointe !

En espérant t'avoir aidé, n'hésite pas à poser des questions si besoin.

View image olivierronat
View image olivierronat
Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Zoofast.fr est toujours là pour vous aider. Revenez souvent pour plus de réponses à toutes vos questions.