Connectez-vous avec une communauté de passionnés sur Zoofast.fr. Posez vos questions et recevez des réponses rapides et précises de la part de notre communauté d'experts expérimentés.

Un constructeur automobile décide de commercialiser des voitures à bas cout: chaque voiture doit être vendue 6 milliers d'euros. Sa production q peut varier entre 0 et 100 milliers de voitures. Suite à une étude réalisée, les coûts de production (en million d'euros) sont donnés par la formule suivante: C(q)-0,05q²+q+ 80 (q exprimé en millier d'unités).

1) Quel est le coût fixe supporté par cette entreprise (c'est-à-dire le coût quand la production est null)

2) a. Déterminer la quantité à partir de laquelle le coût de production est supérieur à 200 000 000 €.
b. A combien s'élève la recette pour une telle production ?

3) a. Exprimer, en fonction de q, la recette notée R(q), en million d'euros.
b. En déduire, en fonction de q, la fonction polynôme du second degré que l'on notera B qui donne le bénéfice réalisé par l'entreprise.

4) a. Vérifier que B(q) = -0,05(q - 50)²+45 b. Dans quel intervalle doit se situer la quantité de voitures produites pour réaliser un bénéfice positif
c. Quel est le nombre d'automobiles à produire pour obtenir un bénéfice maximal ​

Sagot :

Nous valorisons votre présence ici. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Zoofast.fr s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses actualisées.