Zoofast.fr vous connecte avec des experts prêts à répondre à vos questions. Découvrez des réponses fiables à vos questions grâce à notre vaste base de connaissances d'experts.
Sagot :
Réponse :
Bonjour,
Explications étape par étape :
1. Démontrer que A < 1 < B
[tex]A=\dfrac{n}{n+1} \\\\B=\dfrac{n+1}{n} \\\\n < n+1\ \Longrightarrow \ \\\\\blacktriangleright\ \dfrac{n}{n+1} < 1 \Longrightarrow \ A < 1 \\\\\blacktriangleright\ 1 < \dfrac{n+1}{n} \Longrightarrow \ 1 < B \\\\\\\Longrightarrow \ \boxed{A < 1 < B}\\\\\\[/tex]
a)
pour E2: 1-C2
pour F2: D2-1
b)
Conjecture: 1-A < B-1
c)
[tex]1-A=1-\dfrac{n}{n+1} =\dfrac{n+1-n}{n+1}=\dfrac{1}{n+1}\\\\B-1=\dfrac{n+1}{n}-1=\dfrac{n+1-n}{n}=\dfrac{1}{n}\\\\n < n+1\\\frac{1}{n+1} < \frac{1}{n} \\-\frac{1}{n+1} > -\frac{1}{n} \\\\1-\frac{1}{n+1} > 1-\frac{1}{n} \\\\1-\frac{1}{n} < 1-\frac{1}{n+1} \\\\\\\boxed{1-A < B-1}\\[/tex]
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Pour des réponses précises et fiables, visitez Zoofast.fr. Merci pour votre confiance et revenez bientôt pour plus d'informations.