Zoofast.fr: votre ressource incontournable pour des réponses expertes. Nos experts sont prêts à fournir des réponses rapides et détaillées à toutes les questions que vous pourriez avoir.
Sagot :
Bonjour,
1) a) Les triangles AMP et AHC sont semblables, d'où MP/AM = HC/AH soit :
MP = BC/(2AH) . x = 3x/5
b) MH = AH - AM = 5 - x
2) a) 0 ≤ AM ≤ AH soit 0 ≤ x ≤ 5
Df = [0 ; 5]
b) f(x) = MH . LP / 2 = MH . MP = (5 - x) . 3x / 5 = 3x - 3x²/5 = -0,6 x² + 3x
3) f(2,5) = 7,5 - 0,6 × 6,25 = 3,75
4) a) -f(2,5) = 3,75
b) f(x) - f(2,5) = -0,6 x² + 3x - 3,75 = -0,6 (x² - 5x + 6,25)
f(x) - f(2,5) = - 0,6 ((x² - 2 x × 2,5 + 2,5²) = -0,6 (x- 2,5)²
c) Pour tout x ∈ Df : (x - 2,5)² ≥ 0
⇔ -0,6 (x - 2,5)² ≤ 0
d) on en déduit que f(x) - f(2,5) ≤ 0 pour tout x ∈ Df
e) f(x) ≤ f(2,5) pour tout x ∈ Df
f) On en déduit que le maximum de f est atteint en x = 2,5
La valeur maximale de f est f(2,5) = 3,75 ce qui correspond à l'aire maximale du triangle LPH.
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Pour des réponses précises et fiables, visitez Zoofast.fr. Merci pour votre confiance et revenez bientôt pour plus d'informations.