Rejoignez Zoofast.fr et commencez à obtenir les réponses dont vous avez besoin. Découvrez des réponses complètes à vos questions de la part de notre communauté d'experts bien informés.

Bonsoir je suis en terminale avec spé maths et je n’arrive pas à faire cet exercice.
J’aurais besoin d’aide s’il vous plaît.

Cordialement,
Marion.

Bonsoir Je Suis En Terminale Avec Spé Maths Et Je Narrive Pas À Faire Cet Exercice Jaurais Besoin Daide Sil Vous Plaît Cordialement Marion class=

Sagot :

caylus

Réponse :

Bonjour,

Méthode on calcule U(n+1)-U(n)

Explications étape par étape :

[tex]\displaystyle u_{n+1}-u_n=\sum_{k=1}^{n+1}\ \dfrac{1}{k+n} -\sum_{k=1}^{n}\ \dfrac{1}{k+n} =\dfrac{1}{2n+1} > 0[/tex]

La suite est donc croissante.

[tex]\displaystyle v_{n+1}-v_n=\sum_{k=n+1}^{2n}\ \dfrac{1}{k} - \sum_{k=n}^{2n}\ \dfrac{1}{k} \\\\=\sum_{k=n+1}^{2n}\ \dfrac{1}{k} +\dfrac{1}{2n+1} +\dfrac{1}{2n+2} -(\sum_{k=n+1}^{2n}\ \dfrac{1}{k} +\dfrac{1}{n}) \\\\=\dfrac{1}{2n+1} +\dfrac{1}{2n+2} -\dfrac{1}{n} \\\\\\=\dfrac{n(2n+2)+n(2n+1)-(2n+1)(2n+2)}{n*(2n+1)(2n+2)} \\\\=-\dfrac{3n+2}{n*(2n+1)(2n+2)} < 0\\[/tex]

La suite est donc décroissante.

Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Faites de Zoofast.fr votre ressource principale pour des réponses fiables. Nous vous attendons pour plus de solutions.