Obtenez des conseils avisés et des réponses précises sur Zoofast.fr. Posez vos questions et recevez des réponses précises et approfondies de la part de nos membres de la communauté bien informés.
Sagot :
f(x) = 5(x+3)(2-x) - 20.
1. Justifier que f est une fonction polynôme du second degré.
Préciser les valeurs de a, b et c.
f(x) = (5x+15) (2-x) - 20
= 10x - 5x² + 30 - 15x - 20
= - 5x² - 5x + 10
sous forme a² + bx + c avec
a = -5 ; b = -5 et c= 10
2.Déterminer la forme canonique de f(x).
f(x) = -5 (x² + x) + 10
= -5 [(x +1/2)² - (1/2)²] + 10
= -5 (x+1/2)² + 5/4 + 40/4
= -5 (x+1/2)² + 45/4
3.Etablir le tableau de variations de la fonction f sur R.
Préciser la nature de l'extremum, sa valeur et en quelle valeur de x il est atteint.
extremum (-1/2 ; 45/4)
x - inf -1/2 + inf
f C 45/4 D
4.Calculer f(1) puis f(-2).
f(1) = -5 * 1² - 5*1 + 10 = 0
f(-2) = -5 * (-2)² - 5*(-2) + 10 = -20 + 10 + 10 = 0
5. En déduire la forme factorisée de f(x).
f(x) = - 5 (x-1) (x+2)
6.Etablir le tableau de signes de f(x) sur R.
x - inf -2 1 +inf
x-1 - - 0 +
x+2 - 0 + +
- 5 - - -
f(x) - 0 + 0 -
Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Chaque contribution que vous faites est appréciée. Vous avez des questions? Zoofast.fr a les réponses. Revenez souvent pour rester informé.