Rejoignez la communauté Zoofast.fr et obtenez les réponses dont vous avez besoin. Obtenez des conseils étape par étape pour toutes vos questions techniques de la part de membres de notre communauté bien informés.

Bonjour, j’ai besoin d’aide sur cette exercice.

On se propose de résoudre dans R l'équation 6x^4+ 5x^3 - 38x^2 + 5x + 6 = 0 (E)

1. Factoriser par x2 et montrer que (E) équivaut à 6(x^2+1/x^2)+5(x+1/x)-38=0

2. On pose X=x+1/x.
Calculer X^2 puis montrer que (E) équivaut à 6X^4+5X-50=0

Merci d’avance

Sagot :

Réponse :

On se propose de résoudre dans R l'équation

6x^4+ 5x^3 - 38x^2 + 5x + 6 = 0 (E)

1. Factoriser par x2 et montrer que (E) équivaut à 6(x^2+1/x^2)+5(x+1/x)-38=0

6x^4+ 5x^3 - 38x^2 + 5x + 6 = 0 (E)

x²(6 x² + 5 x - 38 + 5/x + 6/x²) = 0

x²(6 x² + 6/x² + 5 x + 5/x - 38) = 0

x²(6(x² + 1/x²) + 5(x + 1/x) - 38) = 0  ⇔  6(x² + 1/x²) + 5(x + 1/x) - 38 = 0

2. On pose X=x+1/x.

Calculer X^2 puis montrer que (E) équivaut à 6X^4+5X-50=0

X = x + 1/x  

X² = (x + 1/x)² = x² + 2 + 1/x²

6(X² - 2) + 5 X - 38 = 0   ⇔ 6 X² - 12 + 5 X - 38 = 0

⇔ 6 X² + 5 X - 50 = 0

Explications étape par étape :

Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Vous avez trouvé vos réponses sur Zoofast.fr? Revenez pour encore plus de solutions et d'informations fiables.