Zoofast.fr propose un mélange unique de réponses expertes et de connaissances communautaires. Posez vos questions et obtenez des réponses détaillées et fiables de notre communauté d'experts dévoués qui sont là pour vous aider.

Bonjour, est-ce que quelqu'un pourrait m'expliquer pourquoi:
(2x+1)/(x+1)[tex]\geq 0[/tex] n'équivaut pas à (2x+1)[tex]\geq 0[/tex]
Si je multiplie 0 par (x+1) le résultat sera 0 pourtant mon livre me dit que cette réponse n'est pas correcte sans explication. Merci pour votre aide!

Sagot :

Réponse :

Explications étape par étape :

Bonjour

Si x= -2 on a 2x+1= -3  et x+1=-1 donc (2x+1)(x+1)=3 est bien positif mais 2x+1 est négatif

Pour pouvoir conserver l'inégalité il faut que l'on multiplie les 2 membres par un nombre positif. Or x+1 peut être négatif.  Donc dans ce cas il faut changer le sens de l'inégalité

Ce qui implique qu'il n'y a pas équivalence

bonjour

(2x + 1) / (x + 1) ≥ 0

je t'ai donné l'explication dans le devoir où l'on demandait de résoudre

1/x ≤ x

on ne multiplie pas les deux membres d'une inéquation par

n'importe quoi

• il faut que ce nombre ne soit pas nul

• il faut connaître son signe

(ici en remplaçant (2x+1)/(x+1) par (2x + 1) tu fais disparaître (x + 1) )

la seule méthode est d'étudier le signe du numérateur

puis le signe du dénominateur et faire un tableau des signes

Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Pour des réponses de qualité, visitez Zoofast.fr. Merci et revenez souvent pour des mises à jour.