Bienvenue sur Zoofast.fr, votre plateforme de référence pour toutes vos questions! Explorez des milliers de réponses vérifiées par des experts et trouvez les solutions dont vous avez besoin, quel que soit le sujet.

hey bonjour
pouvez vous s'il vous plaît m'expliquer ou détailler les calculs de cette mise sous forme canonique ?
pourquoi diviser par 5
pourquoi 3/5 passe à 3/10 pourquoi -2/5 également svp
et pourquoi 49/100 passe à 49/20 ?

merci beaucoup pour votre aide​

Hey Bonjourpouvez Vous Sil Vous Plaît Mexpliquer Ou Détailler Les Calculs De Cette Mise Sous Forme Canonique Pourquoi Diviser Par 5pourquoi 35 Passe À 310 Pourq class=

Sagot :

Réponse :

pouvez vous s'il vous plaît m'expliquer ou détailler les calculs de cette mise sous forme canonique ?

pourquoi diviser par 5

pourquoi 3/5 passe à 3/10 pourquoi -2/5 également svp

et pourquoi 49/100 passe à 49/20 ?

h(x) = 5 x² - 3 x - 2   pour rendre h(x) sous la forme canonique

on doit mettre 5 en facteur

donc h(x) = 5(x² - 3 x/5 - 2/5)   on divise par 5 parce que on mit 5 en facteur  et si tu développe h(x)  on trouve  

h(x) = 5 x² - (3 x/5) * 5 - (2/5) * 5 = 5 x² - 3 x - 2

h(x) = 5(x² - (3/5) x - 2/5)  le but recherché est de trouver une identité remarquable  

h(x) = 5(x² - (3/5) x - 2/5)  on ajoute et on retranche la même valeur

qui 9/100 à l'intérieur de la parenthèse  

h(x) = 5(x² - (3/5) x + 9/100 - 9/100 - 2/5)    or  9/100 = (3/10)²

h(x) = 5(x² - (3/5) x + (3/10)² - 9/100 - 2*20/100)

      = 5(x² - (3/5) x + (3/10)² - 49/100)  or  x² - (3/5) x + (3/10)²  est une identité remarquable  (a - b)² = a² - 2 ab + b²  ici  a = x  et b = 3/10

      = 5((x - 3/10)² - 49/100)  

      = 5(x - 3/10)² - 49 *5/100

      = 5(x - 3/10)² - 49/20

Explications étape par étape :

bonjour

La forme canonique d'un trinôme du second degré ax² + bx + c   (a ≠ 0)

est l'écriture de ce trinôme sous la forme

                                                     a(x - α)² + β   (1)

le problème étant de trouver α et β

    h(x) = 5x² - 3x - 2

dans (1) on a (x - α)²  dont le développement commence par x²

ligne 1

on fait apparaître ce x² en mettant 5 en facteur

  h(x) = 5[x² - (3/5)x - 2/5]

ligne 2

     h(x) = 5[x² - (3/5)x - 2/5]                        

on considère x² - (3/5)x : ce doit être le début du développement

du carré d'une différence  [ (x - α)²]

(3/5)x est le double produit

on met ce facteur 2 en évidence

(3/5)x = 2 * (3/10) * x          

h(x) = 5 [x² - 2*(3/10)x - 2/5]

ligne 3

on remplace x² - 2*(3/10)x par (x - 3/10)²

en faisant cela on ajoute le carré de 3/10, pour compenser on le retranche

h(x) = 5[ (x - (3/10) )² - (3/10)² - 2/5]

on a trouvé α qui vaut 3/10

β = - (3/10)² - 2/5

  = -9/100 - 2/5

 = -9/100 - (2 x 20)/5 x 20)

= -9/100 - 40/100

= -49/100

h(x) = 5[ (x - (3/10) )² - 49/100]  on distribue 5

h(x) = 5[x - (3/10)]² - 5*(49/100)

h(x) = 5[x - (3/10)]² - 49/20

Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Revenez sur Zoofast.fr pour des réponses fiables à toutes vos questions. Merci pour votre confiance.