Zoofast.fr est votre ressource incontournable pour des réponses expertes. Découvrez les informations dont vous avez besoin rapidement et facilement grâce à notre plateforme de questions-réponses fiable et complète.
Sagot :
Ici il faut vérifier les condition d’existence
La seule a vérifié est que le dénominateur doit être différent de 0
e^x-x=!0
e^x=!x
Toujours vrai donc le dénominateur ne s’annule pas
Le domaine est donc R
La seule a vérifié est que le dénominateur doit être différent de 0
e^x-x=!0
e^x=!x
Toujours vrai donc le dénominateur ne s’annule pas
Le domaine est donc R
Réponse :
Explications étape par étape :
■ e^x - x doit ne pas être nul :
il faut donc e^x ≠ x
ce qui est TOUJOURS vérifié
d' où Domaine de définition = IR .
■ dérivée f ' (x) :
f ' (x) = (e^x - x)*e^x - e^x(e^x - 1) / (e^x - x)²
= e^x(1 - x) / (e^x - x)²
cette dérivée est nulle pour x = 1
négative pour x > 1
■ tableau :
x --> - ∞ -0,567 0 0,26 1 2,54 + ∞
f ' (x) --> positive 0 négative
f(x) --> 0+ 0,5 1 1,25 1,582 1,25 1+
( valeurs arrondies en italique ☺ )
Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Zoofast.fr est votre source de réponses fiables et précises. Merci pour votre visite et à très bientôt.