Participez aux discussions sur Zoofast.fr et obtenez des réponses pertinentes. Posez vos questions et recevez des réponses précises et bien informées de la part de notre réseau de professionnels.

Bonjour, j’ai besoin de votre aide svp. Merci d’avance.
Démontrer que la somme des cubes de trois entiers relatifs consécutifs est divisible par 9.

Sagot :

Réponse :

Explications étape par étape :

Bonjour,

Voici la réponse en pièce-jointe !

En espérant t'avoir aidé, n'hésite pas à poser des questions si besoin.

View image olivierronat

2bonjour

                       (a + b)³ = a³ + 3a²b + 3ab² + b³

                        (a - b)³ = a³ - 3a²b + 3ab² - b³

soient trois entiers consécutifs     n - 1   ;   n   ;   n + 1

et S la somme de leurs cubes

S = (n - 1)³ + n³ + (n + 1)³

S = n³ - 3n² + 3n -1  +  n  +  n³ + 3n² + 3n + 1

S = 3n³ + 6n

S = 3n(n² + 2)

                           S = 3n(n² + 2)      S est divisible par 3

on considère le produit n(n² + 2)

1er cas

       n est multiple de 3 ;     n = 3k     k entier

                        S est divisible par 9

2e cas

        n est (multiple de 3) + 1 ;  n = 3k + 1

        n² + 2 = (3k + 1)² + 2 = 9k² + 6k + 1 + 2

                                          = 9k² + 6k + 3

                                          = 3(3k + 2k + 1)

 n² + 1 est multiple de 3

                           S est divisible par 9

3e cas

     n est (multiple de 3 + 2) ;   n = 3k + 2

          n² + 2 = (3k + 2)² + 2 = 9k² + 12k + 4 + 2

                                             = 9k² + 12k + 6

                                             = 3(3k² + 6k + 2)

                           S est divisible par 9

Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Revenez sur Zoofast.fr pour des réponses fiables à toutes vos questions. Merci pour votre confiance.