Obtenez des conseils d'experts et des connaissances communautaires sur Zoofast.fr. Obtenez des réponses précises à vos questions grâce à notre communauté d'experts toujours prêts à fournir des solutions rapides et pertinentes.

Salut, j'ai besoin d'aide pour mes devoirs. Mon devoir est dans les pièces jointes.

Salut Jai Besoin Daide Pour Mes Devoirs Mon Devoir Est Dans Les Pièces Jointes class=
Salut Jai Besoin Daide Pour Mes Devoirs Mon Devoir Est Dans Les Pièces Jointes class=

Sagot :

sudes

1.a. Chaque article est vendu 120 euros, la recette est donc de R(q) = 120q

1.b. facile à faire

1.c. Il y a bénéfices lorsque la courbe des recettes dépasse cette du cout de fabrication. Le nombre d'articles à fabriquer est donc l'abscisse du point d'intersection de la courbe et de la droite.
2.a. Bénéfice = recettes - couts = R(q) - C(q) = 120q -(2q² + 20q +800) =-2q² + 100q - 800 2.b. : On a B(q) = aq² + bq + c avec a=-2 ; b=+100 et c=-800.
On utilise le discriminant : [tex]\Delta = b^2 - 4ac[/tex] d'où [tex]\Delta = 100^2 - 4(-2)(-800)[/tex]
On trouve donc [tex]\Delta = 3600 = 60^2[/tex]
Or les racines de l'équation B(q)=0 sont [tex]q_{1}=\frac{-b-\sqrt{\Delta}}{2a}[/tex] et [tex]q_{2}=\frac{-b+\sqrt{\Delta}}{2a}[/tex] d'où [tex]q_{1}=40[/tex] et [tex]q_{2}=10[/tex]
On peut donc écrire B(q)=-2(q-10)(q-40)
2.c. Pour avoir B(q) positif, il faut que (q-10) et (q-40) soient de signes différents (à cause du - dans l'équation précédente). Or [tex]q-10\leq 0[/tex] pour [tex]q\leq 10[/tex] et [tex]q-40 \leq 0 [/tex] lorsque [tex]q \leq 40[/tex]. Donc, sur l'intervalle [0;50], B(q) est positif sur [10;40]
3.a. B(q)= -2q² + 100q - 800  = -2q² +100q - 1250 + 450 = -2(q² - 50q + 625) or 50=2*25 et 625 = 25² donc on retrouve une identité remarquable : q² - 2*25*q + 25² = (q - 25)²
Le maximum de B aura lieu pour  -2(q - 25)² maximal, ce qui est le cas lorque q=25 et dans ce cas B(25)= 450 euros.
Voilà !

Nous valorisons chaque question et réponse que vous fournissez. Continuez à vous engager et à trouver les meilleures solutions. Cette communauté est l'endroit parfait pour grandir ensemble. Pour des réponses rapides et fiables, pensez à Zoofast.fr. Merci de votre visite et à bientôt.