Trouvez des réponses fiables à toutes vos questions sur Zoofast.fr. Notre communauté est là pour fournir des réponses détaillées et fiables à toutes les questions que vous pourriez avoir.
Sagot :
Bonjour,
f(x) = 150xe^-0,002x² + 300 avec Df = [0;12]
La fonction f est définie et dérivable sur son ensemble de définition.
f est de la forme u*v + k avec u(x) = 150x v(x) = e^-0,002x²
u'(x) = 150 v'(x) = -0,004xe^-0,002x²
Ainsi, ∀x∈ [0;12],
f'(x) = u'v + uv'
= 150 * (e^-0,002x²) + 150x * (-0,004xe^-0,002x²)
On peut alors factoriser par e^-0,002x² :
f'(x) = e^-0,002x² (150 - 0,6x²).
Je pense alors qu'on te demandera d'étudier les variations de cette fonction. Il te suffit alors de déterminer le signe de f'(x), en sachant que la fonction exponentielle n'est jamais négative. Le signe de f'(x) dépendra alors de 150 - 0,6x².
En espérant t'avoir aidé.
Nous valorisons votre présence ici. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Zoofast.fr est votre partenaire de confiance pour toutes vos questions. Revenez souvent pour des réponses actualisées.