Rejoignez Zoofast.fr et commencez à obtenir les réponses dont vous avez besoin. Explorez une grande variété de sujets et trouvez des réponses fiables de la part de nos membres de la communauté expérimentés.

Bonjour! je suis bloquée sur cet exercice de mon devoir maison, pouvez-vous m’aider s’il vous plaît ? Merci d’avance et bonne journée :)

On considère les fonctions f et g définies sur R par : f(x) = x^3 et g(x)= x^2 + x + 2 ainsi que leurs
courbes respectives Cf et Cg dans un repère.
1) Montrer que le point A (2;8 ) appartient aux deux courbes.
2) Soit h la fonction définie su r R par: h(x) = f(x) - g(x).
a) Déterminer le tableau de variations de la fonction h.
b) En déduire le tableau de signes de h (x).
c) En déduire la position de la courbe Cf par rapport à la courbe Cg suivant les valeurs de x.

Sagot :

Réponse :

Explications étape par étape :

f(x)=x³ et g(x)=x²+x+2

1) f(1)=8   et g(1)=8, donc  le point A appartient aux deux courbes.

2) h(x)= f(x)-g(x) =x³-x²-x-2  

a)étude de h(x)

Limites si x tend vers-oo , h(x) tend vers -oo

si x tend vers+oo, h(x) tend vers+oo

Dérivée: h'(x)=3x²-2x-1

h'(x) =0 pour x1=-1/3 et x2=1  ceci via delta

Tableau de signes h'(x) et de variations de h(x)

x         -oo                         -1/3                          1                            +oo

h'(x)                   +                0            -               0           +

h(x)    -oo       croît           h(-1/3)    décroit       h(1)        croît         +oo

h(-1/3)= ......(valeur<0) et h(1)=-5

D'après le TVI, h(x)=0 admet  une et une seule solution comprise entre 1 et +oo . Elle est évidente c'est x=2 .    (vérifie h(2)=0)  

b) h(x) est <0 sur ]-oo;  2[   et h(x)>0 sur ]2;+oo[  

c ) si x<2,  Cf est en dessous de Cg et si x>2 Cf est au dessus de Cg .

*******************

Nota : une autre méthode pour déterminer le signe de h(x)  sans passer par l'étude  de la fonction.

h(x)=x³-x²-x-2 on a vu que h(x)=0 pour x=2 car f(2)=g(2)

donc h(x)=(x-2)(ax²+bx+c)

par comparaison des coefficients ou par une simple division euclidienne on voit que h(x)=(x-2)(x²+x+1)

l'expression x²+x+1=0 n'a pas de solution elle est donc toujours>0

par conséquent le signe de h(x) dépend uniquement du signe de (x-2)

h(x)<0, si x<2   et h(x)>0 si x >2