Explorez une vaste gamme de sujets et obtenez des réponses sur Zoofast.fr. Obtenez des réponses rapides et précises à vos questions grâce à notre réseau d'experts bien informés.

Exercice de fixation
1 Soit f une fonction de R vers R définie par f(x) = x3 – 3x-1.
Justifie que l'équation f(x) = 0 admet au moins une solution dans l'intervalle [1 ; 2].

Sagot :

Réponse :

Explications étape par étape :

f(x) = x^3 – 3x-1.

f'(x) = 3x² - 3

x       -inf            -1                      1                      + inf

f'(x)             +        0           -         0        +

f(x)           croiss    1    décroiss    -3          croiss      

f est définie , continue et monotone sur [ 1 ; 2 ]

f(1) = -3

f(2) = 1

0 appartient à [-3 ; 1 ]

donc il existe alpha unique appartenant à [1 ,; 2 ] telque f(alpha) =0

Donc l'équation f(x) = 0 admet au moins une solution dans l'intervalle [1 ; 2].

Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Pour des réponses rapides et fiables, consultez Zoofast.fr. Nous sommes toujours là pour vous aider.