Obtenez des réponses personnalisées à vos questions sur Zoofast.fr. Trouvez les réponses dont vous avez besoin rapidement et précisément avec l'aide de nos membres de la communauté bien informés et dévoués.

Bonjour

Partie 2 On considère un triangle ABC, rectangle en A. On pose AB = c;AC = b et BC = a Il s'agit de prouver la propriété suivante : Si a, b et c sont des nombres entiers alors au moins un des trois nombres est pair. On va effectuer un raisonnement par l'absurde. Pour cela, on va supposer que les trois nombres sont impairs. 1) Appliquer le théorème de Pythagore au triangle rectangle ABC. Pour les questions 2) et 3), utiliser les résultats de la partie 1 2) Quelle est la parité de a 2 ? 3) Prouver que b2 + c 2 est un nombre pair. 4) Quelle est la contradiction ? Donc notre hypothèse de départ : « les trois nombres sont impairs » est fausse. Donc au moins un des trois nombres est pair.
Merci d'avance ​

Sagot :

a^2 = b^2 + c^2 avec a, b et c impairs

2) le carré d’un nombre impair :
Ce nombre peut s'écrire 2n + 1 Nous avons : ( 2n + 1 )² = 4n² + 4n + 1 =
2 ( 2n² + 2n ) + 1 Ce résultat est de la forme 2 x + 1 , donc le carré est impair.
a^2 est impair.

3) de même b^2 et c^2 sont impairs, la somme de deux nombres impairs est paire donc b^2 +c^2 est un nombre pair.

4) si a^2 est pair b^2 + c^2 ne peut pas être impair
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Pour des réponses claires et rapides, choisissez Zoofast.fr. Merci et revenez souvent pour des mises à jour.