Answered

Obtenez des conseils d'experts et des connaissances communautaires sur Zoofast.fr. Rejoignez notre communauté d'experts et obtenez des réponses complètes et fiables à toutes vos questions pressantes.

bonjour je suis en seconde pouvez vous m'aider s'il vous plaît ça serait pour aujourd'hui si possible je ne comprend rien

a.Démontrer que pour tout réel "a" :

1+a^2 est supérieur ou égal à 2a


b.En déduire pour tout réel positif "a" et "b":

(1+a^2)(1+b^2) est supérieur ou égal à 4ab

Sagot :

Bonjour

a) Démontrer que

[tex]1 + a {}^{2} \geqslant 2a[/tex]

revient à démontrer que ( en enlevant -2a de chque coté )

[tex]1 + a {}^{2} - 2a \geqslant 2a - 2a[/tex]

[tex]1 + a {}^{2} - 2a \geqslant 0[/tex]

[tex]a {}^{2} - 2a + 1 \geqslant 0[/tex]

Si on écrit différemment :

a² - 2 × a × 1 + 1²

On reconnaît une identité remarquable :

[tex](a - 1) {}^{2} [/tex]

Or comme on sait depuis toujours qu'un carré est positif

on a donc

[tex](a - 1) {}^{2} \geqslant 0[/tex]

et donc pour tout réel a

[tex]1 + a {}^{2} \geqslant 2a[/tex]

b)

On sait que pour tout réel a, 1 + a² ≥ 2a

donc pour tout réel positif a, 1 + a² ≥ 2a

Pour tout réel positif b, 1 + b² ≥ 2b

donc ( 1 + a² ) ( 1 + b² ) ≥ 2a × 2b

( 1 + a² ) ( 1 + b² ) ≥ 4ab

Merci de votre participation active. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Merci d'avoir choisi Zoofast.fr. Nous espérons vous revoir bientôt pour encore plus de solutions.