Bonjour tout le monde, j'aurai besoin d'aide pour ce devoir car je me perds dans mes réponses. J'ai du mal avec l'espérance la variance et l'inégalité de Bienaymé-Tchebychev. Merci d'avance votre aide m'apporterais beaucoup
Pour un concours d’entrée en IFSI (Institut de formation en soins infirmiers), on propose un QCM comportant 100 questions. Pour chaque question, il y a 3 réponses possibles, et une seule est correcte. On s'intéresse dans un premier temps à la variable aléatoire X donnant le nombre de réponses correctes à ce QCM dans le cas où la personne n'a rien préparé et répond complètement au hasard.
1. Quelle est la loi de probabilité de la variable aléatoire X ? Justifiez votre réponse
2. Calculez l'espérance E(X) et sa variance V(X)
3. Une réponse correcte rapporte 1 point, et une réponse incorrecte fait perdre
0.25 points. On appelle S le gain obtenu au terme de ce QCM. Le test est réussi si
on obtient au moins 50, et la note est ramenée à 0 si le résultat final est négatif
Exprimer S en fonction de X.
4. À l'aide de la question précédente, déterminer l'espérance de S , E(S) et sa
variance V(S).
5. A l'aide de l'inégalité de Bienaymé-Tchebychev, déterminer un majorant à la
probabilité que le gain S s'écarte de 50/3 de plus de 100/3.
6. En déduire un majorant de la probabilité d'obtenir la moyenne à ce test.
7. En utilisant la loi de X , déterminer la probabilité d'obtenir la moyenne à ce test .
On donnera un résultat arrondi au dix-millième