Explorez un monde de connaissances et obtenez des réponses sur Zoofast.fr. Trouvez les informations dont vous avez besoin rapidement et facilement avec l'aide de notre réseau de professionnels expérimentés.

Bonjour je suis en seconde.
J'ai besoin d'aide

Bonjour Je Suis En Seconde Jai Besoin Daide class=

Sagot :

Réponse :

Explications étape par étape :

1)
[tex]DA=\sqrt{(X_{A} -X_{D})^{2} +(Y_{A} -Y_{D})^{2}} \\DA=\sqrt{(-5 -3)^{2} +(-2 -(-1))^{2}} \\DA=\sqrt{(-8)^{2} +(-1)^{2}} \\DA=\sqrt{64 +1}\\DA=\sqrt{65} \\[/tex]

[tex]DB=\sqrt{(X_{B} -X_{D})^{2} +(Y_{B} -Y_{D})^{2}}\\DB=\sqrt{(-4-3)^{2} +(3 -(-1))^{2}}\\DB=\sqrt{(-7)^{2} +(4)^{2}}\\DB=\sqrt{49 +16}\\DB=\sqrt{65}[/tex]

[tex]DC=\sqrt{(X_{C} -X_{D})^{2} +(Y_{C} -Y_{D})^{2}}\\DC=\sqrt{-4 -3)^{2} +(-5 -(-1)})^{2}}\\DC=\sqrt{(-7)^{2} +(-4})^{2}}\\DC=\sqrt{49 +16}\\DC=\sqrt{65}[/tex]

2)
DA = DB = DC = [tex]\sqrt{65}[/tex] toutes ces distances partent d'un même point le point D et donc de rayon [tex]\sqrt{65}[/tex]

3)
[tex]DE=\sqrt{(X_{E} -X_{D})^{2} +(Y_{E} -Y_{D})^{2}}\\DE=\sqrt{(10-3 )^{2} +(3-(-1))^{2}}\\DE=\sqrt{(7 )^{2} +(4)^{2}}\\DE=\sqrt{49 +16}\\DE=\sqrt{65}[/tex]

Le point E(10; 3) appartient bien au cercle de centre D et de rayon [tex]\sqrt{65}[/tex]

Je te laisse finir et faire la même chose pour le point F