Zoofast.fr fournit une plateforme conviviale pour partager et obtenir des connaissances. Rejoignez notre communauté de connaisseurs pour accéder à des réponses fiables et détaillées sur n'importe quel sujet.
Sagot :
Bonjour Ambre,
Contrat 1
1.a)
[tex]u_{2} = 12000 + 750 = 12750\\u_{3} = 12750 + 750 = 13500[/tex]
1.b) [tex](U_{n} )[/tex] est une suite arithmétique puisqu'à chaque terme, on ajoute à la valeur du terme précédent un nombre constant (ici 750, c'est la raison de la suite).
1.c) L'expression générale d'une suite arithmétique de raison r est :
• si la suite commence à [tex]n=0[/tex] , [tex]u_{n} = u_{0} + nr[/tex]
• si la suite commence à [tex]n=n_0[/tex] , [tex]u_n = u_{n0} + (n-n_0)r[/tex]
Dans notre cas, la suite commence à n=1 (deuxième situation).
Ainsi,
[tex]u_n = u_1 + (n-1)r[/tex]
1.d) On cherche [tex]u_1 + u_2 + ... + u_9[/tex]
D'après une formule du cours :
• si la suite commence à [tex]n=0[/tex], [tex]u_0 + u_1 + ... + u_n = (n+1) * \frac{u_0+u_n}{2}[/tex]
• si la suite commence à [tex]n=n_0[/tex], [tex]u_{n0} + u_1 + ... + u_n = (n-n_0+1) * \frac{u_{n0}+u_n}{2}[/tex]
Dans notre cas, la suite commence à n=1 (deuxième situation).
Ainsi,
[tex]u_1 + u_2 + ... + u_9 = u_1 * \frac{u_1+u_9}{2}\\[/tex]
Or, [tex]u_9 = u_1 + (9-1)*r = 12000 + 8*750 = 18000[/tex]
d'où :
[tex]u_1 + u_2 + ... + u_9 = 12000 * \frac{12000+18000}{2} = 135000[/tex]
Contrat 2
2.a)
Une augmentation de 5% revient à multiplier le terme par 1.05.
[tex](a + a*\frac{5}{100} = a*\frac{105}{100} = a * 1.05 )[/tex]
[tex]v_2 = 12000 * 1.05 = 12600\\v_3 = 12600*1.05 = 13230[/tex]
2.b) [tex](V_n)[/tex] est une suite géométrique puisqu'à chaque terme, on multiplie la valeur du terme précédent par un nombre constant (ici 1.05, c'est la raison de la suite)
2.c) L'expression générale d'une suite géométrique de raison q est :
• si la suite commence à [tex]n=0[/tex] , [tex]v_{n} = v_{0} * q^{n}[/tex]
• si la suite commence à [tex]n=n_0[/tex] , [tex]u_n = u_{n0} * q^{n-n_0}[/tex]
Dans notre cas, la suite commence à n=1 (deuxième situation).
Ainsi ,
[tex]v_n = v_1 * q^{n-1}[/tex]
2.d) On cherche [tex]v_1 + v_2 + ... + v_9[/tex]
D'après une formule du cours :
• si la suite commence à [tex]n=0[/tex], [tex]v_0 + v_1 + ... + v_n = v_0 * \frac{1-q^{n+1}}{1-q}[/tex]
• si la suite commence à [tex]n=n_0[/tex], [tex]v_{n0} + v_1 + ... + v_n = v_{n0} * \frac{1-q^n}{1-q}[/tex]
Dans notre cas, la suite commence à n=1 (deuxième situation).
Ainsi,
[tex]v_1 + v_2 + ... + v_9 = 12000 * \frac{1-1.05^9}{1-1.05} = 132 319[/tex] (arrondi)
3) Le contrat le plus avantageux est donc le deuxième
(132 319 < 135 000)
4.a)
u = 12000
v = 12000
n = int(input("saisir une valeur de n:"))
for i in range(n-1) :
u = u + 750
v = v * 1.05
print("pour n=",n, "on a", "u=",u, "et v=",v)
Je me suis permis de modifier le nombre de tour de boucle car la suite commence à n=1 et non à n=0. En restant avec un nombre de tour de n, pour n=1 on aurait obtenu [tex]u_1 = 12750[/tex] et [tex]v_1 = 12600[/tex] .
4.b)
pour n=4, on obtient (en appliquant les formules explicites) :
[tex]u_4 = 12000 + 3*750 = 14250\\\\v_4 = 12000 * 1.05^{3} = 13891[/tex]
A noter : si on n'avait pas remplacer n par n-1 dans le range, on aurait obtenu les valeurs de [tex]u_5[/tex] et [tex]v_5[/tex].
Bonne journée
Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Pour des solutions rapides et précises, pensez à Zoofast.fr. Merci de votre visite et à bientôt.