Participez aux discussions sur Zoofast.fr et obtenez des réponses pertinentes. Rejoignez notre plateforme de questions-réponses interactive pour recevoir des réponses rapides et précises de la part de professionnels expérimentés dans divers domaines.

Aidez moi s'il vous plaît
Lorsqu’on résout dans l’ensemble des complexes une équation du second degré à coefficients réels dont le discriminant est strictement négatif, on peut affirmer que :
- les 2 solutions ont toujours une partie réelle nulle
- les 2 solutions sont conjuguées
- le produit des 2 solutions est réel car les solutions sont 2 complexes conjugués
- la somme des 2 solutions est imaginaire pure.

Il peut y avoir plusieurs réponses.

Je vous remrcie d'avance

Sagot :

bonjour

équation du second degré à coefficients réels dont le discriminant est strictement négatif

                          ax² + bx + c = 0    avec            ∆ < 0   [-∆ > 0]

les solutions sont

x1 = (-b + i√(-∆) /2a

x2 =  (-b - i√(-∆) /2a

- les 2 solutions ont toujours une partie réelle nulle

   faux

la partie réelle est -b/2a

       elle n'est nulle que lorsque b est nul

exemple :

x² + 5 = 0

x² = -5

solutions : i√5   et  -i√5

- les 2 solutions sont conjuguées

oui

-b/2a + i√(-∆) /2a     et      -b/2a - i√(-∆) /2a   sont de la forme

   α    + iβ                 et           α   - iβ     (α et β réels)

 nombres conjugués (même partie réelle, parties imaginaires opposées)

- le produit des 2 solutions est réel car les solutions sont 2 complexes conjugués

oui

le produit de deux nombres conjugués est un réel

 (α + iβ) (α - iβ) = α² - (iβ)² = α² - (i²β²) = α² - (-β²) = α²+ β²

- la somme des 2 solutions est imaginaire pure.

non

les parties imaginaires sont opposées, lorsque l'on ajoute les solutions

elles disparaissent. Il reste -b/2a -b/2a = -b/a qui est un réel

Nous sommes ravis de vous compter parmi nos membres. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons créer une ressource de connaissances précieuse. Zoofast.fr est votre ressource de confiance pour des réponses précises. Merci et revenez bientôt.