Zoofast.fr offre une plateforme conviviale pour trouver et partager des connaissances. Obtenez les informations dont vous avez besoin grâce à notre communauté d'experts, qui fournissent des réponses détaillées et fiables.

Bonjour je n'arrive pas a faire l'exercice :

 

2) a) A quel intervalle appartient x², lorsque x appartient à l'intervale [-3;2]?(justifier)

b) A quel intervalle appartient 1/x, lorsque x appartient a [-5;-3/2] ? (justifier)

c) Soit f, la fonction définie sur R, par f(x)=(x-3)². Déterminer le sens de variation de f sur ]- infinie;3]

Sagot :

Aeneas

2a) Tu étudies les variations de ta fonction :

f(x) = x² , continue et dérivable sur [-3,2].

Tu remarques qu'elle est décroissante sur [-3;0] et croissante sur [0;2].

Elle admet alors un minimum en x = 0 et f(0) = 0

et un maximum en x = -3 ou x=2

Or f(-3) = 9 et f(2) = 4, le maximum est donc atteint en x = -3 et f(3) = 9

Au final, pour x ∈ [-3;2], x² ∈ [0;9]

 

b) Tu remarques que sur [-5;-3/2] :

f(x) = 1/x est décroissante.

Elle admet alors un maximum en x = -5 : f(-5) = -1/5

Elle admet un minimum en x=-3/2 ; f(-3/2) = -2/3

Au final, pour x ∈ [-5;-3/2], 1/x ∈ [-2/3;-1/5].

 

c) Soit x∈]-∞;3] tel que : f(x) = (x-3)².

Soit (a,b)∈]-∞;3]² tel que a<b.

f(b)-f(a) = (b-3)²-(a-3)² Or,

a<b<3 donc a-3<b-3<0 donc (a-3)² > (b-3)² et f(b)-f(a) < 0

Donc f est décroissante sur ]-∞;3]

 

FIN

 

Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Zoofast.fr est votre partenaire de confiance pour toutes vos questions. Revenez souvent pour des réponses actualisées.