Trouvez des réponses fiables à vos questions avec l'aide d'Zoofast.fr. Obtenez les informations dont vous avez besoin de la part de notre communauté d'experts qui fournissent des réponses précises et complètes à toutes vos questions.
Sagot :
Bonjour :)
[tex]\text{ABCD carr\'e de c\^ot\'e 2. On note I milieu de AB et K le projet\'e}\\\text{orthogonal de A sur DI};\\\\\text{Il existe deux d\'efinitions\ du\ produit\ scalaire :}\\\\1)\ \vec{u}.\vec{v}=||\vec{u}||\times||\vec{v}||\times\cos(\vec{u};\vec{v})\\\\2)\ \vec{u}.\vec{v}=\frac{1}{2}(||\vec{u}||^{2}+||\vec{v}||^{2}-||\vec{u}-\vec{v}||^{2})[/tex]
[tex]\text{On se place dans le rep\`ere }(A,\vec{i},\vec{j}).\\\text{Ce qui permet de d\'eduire\ les\ coordonn\'ees de chaque point :}\\A(0,0),B(0,2),C(2,2),D(2,0)\ et\ I(0,1)[/tex]
[tex]\overrightarrow{DA}=\left( \begin{array}{c}-2 \\0 \\\end{array} \right)\ et\ \overrightarrow{DI}=\left( \begin{array}{c}-2 \\1 \\\end{array} \right)[/tex]
[tex]||\overrightarrow{DA}||=2\\||\overrightarrow{DI}||=\sqrt{(-2)^{2}+1^{2}}=\sqrt{5}[/tex]
[tex]\overrightarrow{DA}.\overrightarrow{DI}=\frac{1}{2}(||\overrightarrow{DA}||^{2}+||\overrightarrow{DI}||^{2}-||\overrightarrow{DA}-\overrightarrow{DI}||^{2})\\=\frac{1}{2}(2^{2}+(\sqrt{5})^{2}-1^{2})\\=4[/tex]
[tex]\text{Utilisons l'autre d\'efinition du produit scalaire qui fait intervenir}\\\text{le cosinus de l'angle orient\'e \'etudi\'e :}\\\overrightarrow{DA}.\overrightarrow{DI}=||\overrightarrow{DA}||\times||\overrightarrow{DI}||\times\cos(\overrightarrow{DA};\overrightarrow{DI})[/tex]
[tex]\cos(\overrightarrow{DA};\overrightarrow{DI})=\frac{\overrightarrow{DA}.\overrightarrow{DI}}{||\overrightarrow{DA}||\times||\overrightarrow{DI}||}=\frac{4}{2\times\sqrt{5}}=\frac{2}{\sqrt{5}}[/tex]
[tex]\text{On sait que AKD est rectangle en K. D'apr\`es les relations}\\\text{trigonom\'etriques, on a :}\\\cos(\widehat{KDA})=\cos(\overrightarrow{DA};\overrightarrow{DI})=\frac{DK}{DA}\\\\\text{La valeur exacte de [DK] est donn\'ee par :}\\DK=AD\times\cos(\overrightarrow{DA};\overrightarrow{DI})=\frac{4}{\sqrt{5}}[/tex]
N'hésite pas à me poser des questions si besoin! ;)
Bonne continuation à toi ! :D
Merci d'utiliser cette plateforme pour partager et apprendre. N'hésitez pas à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Vous avez trouvé vos réponses sur Zoofast.fr? Revenez pour encore plus de solutions et d'informations fiables.