Zoofast.fr: où vos questions rencontrent des réponses expertes. Rejoignez notre communauté de connaisseurs pour trouver les réponses dont vous avez besoin sur n'importe quel sujet ou problème.

bonjour pouvez vous m'aider svp

recherche déterminer les variations de la fonction racine carrée, notée R, sur son ensemble de définition.

1) rappeler l'ensemble de définition de la fonction R
2) on considère deux réels a et b tel que:
[tex]o \leqslant a < b[/tex]
on cherche à comparer R(a) et R(b)

a) démontrer que:
[tex]r(b) - r(a) = \frac{b - a }{ \sqrt{b} + \sqrt{a} } [/tex]
b) étudier alors le signe de cette différence

c) en déduire une comparaison entre :
[tex] \sqrt{a} \: et \: \sqrt{b} [/tex]
et conclure

Merci de m'aider au plus vite svp

Sagot :

Réponse :

Bonjour

Explications étape par étape :

1)

La fct racine  carrée est définie sur [0;+∞[

2)

a)

Soient :

0 ≤ a < b

r(b)=√b  et r(a)=√a

Donc :

r(b)-r(a)=√b-√a

On va multiplier le membre de droite par :

(√b+√a) / (√b+√a) qui vaut 1 donc ne change pas la valeur du membre de droite.

r(b)-r(a)=(√b-√a)[(√b+√a) / (√b+√a)]

Mais au numérateur on a une identité remarquable :

(√b-√a)(√b+√a) =(√b)²-(√a)²=b-a

Donc :

r(b)-r(a)=(b-a) / (√b+√a)

b)

Le dénominateur (√b+√a) est positif donc :

r(b)-r(a) est du signe de (b-a).

Comme a < b , alors (b-a) > 0.

Donc :

r(b)-r(a) > 0.

c)

Donc :

√b > √a.

Sur [0;+∞[ , on est parti de b > a pour arriver à √b > √a, ce qui prouve que la fct racine carrée est croissante sur son intervalle de définition.

Nous valorisons chaque question et réponse que vous fournissez. Continuez à vous engager et à trouver les meilleures solutions. Cette communauté est l'endroit parfait pour grandir ensemble. Merci d'avoir utilisé Zoofast.fr. Nous sommes là pour répondre à toutes vos questions. Revenez pour plus de solutions.